Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113599

RESUMO

Biomass is a valuable renewable energy adapted as an alternative to traditional fossil fuels. Apart from fuels, biomass is synthesized into highly valuable products that are used in various forms including biofuels, biochemical, bioproducts, packing material, and find practice in pharmaceutical, cosmetics, and nutraceuticals industries. Particularly, microalgae a third-generation feedstock known for its rich carbon content possesses protein lipids and carbohydrates produces a variety of green products such as bioethanol, biohydrogen, biodiesel, and biomethane, and also fixes carbon emission to a certain amount in the atmosphere. However, microalgae conversion in the presence of a catalyst such as a metal-organic framework (MOF) yields high-quality valuable products. A MOF is a porous crystalline material where the structure and pore size can be controlled making it suitable for catalytic reactions and appropriate conversion paths. This review briefly explains the prevailing status of microalgae as a sustainable biomass and features its components for microalgae biorefinery into valuable products and its application in the food industry. MOF properties, characteristics and various MOF-based conversion technologies for biomass conversion with its application are elaborated. In addition, usage of value products produced from microalgae biorefinery in the food industry and its importance is elucidated. In addition, the challenges in integrating biorefinery processes with food industry operations and their solutions are also presented. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA