Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(9): 4868-4879, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32662211

RESUMO

Ectotherm thermal physiology is frequently used to predict species responses to changing climates, but for amphibians, water loss may be of equal or greater importance. Using physical models, we estimated the frequency of exceeding the thermal optimum (Topt ) or critical evaporative water loss (EWLcrit ) limits, with and without shade- or water-seeking behaviours. Under current climatic conditions (2002-2012), we predict that harmful thermal (>Topt ) and hydric (>EWLcrit ) conditions limit the activity of amphibians during ~70% of snow-free days in sunny habitats. By the 2080s, we estimate that sunny and dry habitats will exceed one or both of these physiological limits during 95% of snow-free days. Counterintuitively, we find that while wet environments eliminate the risk of critical EWL, they do not reduce the risk of exceeding Topt (+2% higher). Similarly, while shaded dry environments lower the risk of exceeding Topt , critical EWL limits are still exceeded during 63% of snow-free days. Thus, no single environment that we evaluated can simultaneously reduce both physiological risks. When we forecast both temperature and EWL into the 2080s, both physiological thresholds are exceeded in all habitats during 48% of snow-free days, suggesting that there may be limited opportunity for behaviour to ameliorate climate change. We conclude that temperature and water loss act synergistically, compounding the ecophysiological risk posed by climate change, as the combined effects are more severe than those predicted individually. Our results suggest that predictions of physiological risk posed by climate change that do not account for water loss in amphibians may be severely underestimated and that there may be limited scope for facultative behaviours to mediate rapidly changing environments.


Assuntos
Mudança Climática , Água , Anfíbios , Animais , Ecossistema , Temperatura
2.
Conserv Biol ; 33(5): 1094-1105, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30793368

RESUMO

Translocation is used by managers to mitigate the negative impacts of development on species. Moving individuals to a new location is challenging, and many translocation attempts have failed. Robust, posttranslocation monitoring is therefore important for evaluating effects of translocation on target species. We evaluated the efficacy of a translocation designed to mitigate the effects of a utility-scale solar energy project on the U.S. federally listed Mojave desert tortoise (Gopherus agassizii). The species is a long-lived reptile threatened by a variety of factors, including habitat loss due to renewable energy development in the Mojave Desert and portions of the Colorado Desert in southern California (southwestern United States). We translocated 58 individual tortoises away from the project's construction site and intensively monitored them over 5 years (2012-2017). We monitored these individuals and tortoises located in the translocation release area (resident tortoises; n = 112) and control tortoises (n = 149) in a nearby location. We used our tortoise encounter data and known-fate survival models to estimate annual and cumulative survival. Translocated tortoises in each of 2 size classes (120-160 mm, >160 mm) did not survive at lower rates than resident and control tortoises over the study period. For models with different sets of biotic and abiotic covariates, annual and cumulative estimates of survival were always >0.87 and >0.56, respectively. Larger tortoises tended to have higher survival, but translocated tortoises were not differentially affected by the covariates used to model variation in survival. Based on these findings, our translocation design and study protocols could inform other translocation projects for desert species. Our case study highlights the benefits of combining rigorous scientific monitoring with well-designed, mitigation-driven management actions to reduce the negative effects of development on species of conservation concern.


Monitoreo Multianual de la Supervivencia de un Reptil Longevo en Peligro después de una Reubicación por Mitigación Resumen Los administradores utilizan la reubicación para mitigar los impactos negativos que el desarrollo tiene sobre las especies. El traslado de individuos hacia una nueva ubicación es todo un reto y muchos intentos de reubicación han fallado. Por esto el monitoreo robusto post-reubicación es importante para la evaluación de los efectos de la reubicación sobre las especies. Evaluamos la eficiencia de una reubicación diseñada para mitigar los efectos de un proyecto de energía solar fotovoltaica sobre la tortuga terrestre del desierto de Mojave (Gopherus agassizii), una especie en la lista federal estadunidense de especies en peligro. Los reptiles de esta especie son longevos y se encuentran en peligro por una variedad de factores, incluyendo la pérdida del hábitat por el desarrollo de energías renovables en el desierto de Mojave y en porciones del desierto del Colorado en el sur de California (suroeste de los Estados Unidos). Reubicamos a 58 individuos de esta especie para alejarlos del sitio de construcción del proyecto y los monitoreamos intensivamente durante cinco años (2012 - 2017). Monitoreamos a estos individuos y a las tortugas que ya se encontraban en el sitio de liberación (tortugas residentes; n = 112), así como a un grupo control de tortugas (n = 149) en una ubicación cercana. Usamos nuestros datos de encuentro con tortugas y modelos de supervivencia con destino conocido para estimar la supervivencia anual y acumulativa. Las tortugas reubicadas en cada una de las dos clases de tamaño (120-160 mm, >160 mm) no sobrevivieron a tasas más bajas que las residentes y las del grupo control durante el periodo de estudio. Para los modelos con conjuntos diferentes de co-variados bióticos y abióticos los estimados anuales y acumulativos de supervivencia fueron siempre >0.87 y >0.56, respectivamente. Las tortugas más grandes tendieron a tener una mayor supervivencia, aunque las tortugas reubicadas no se vieron afectadas diferencialmente por los co-variados que se usaron para modelar la variación de la supervivencia. Con base en estos hallazgos, nuestro diseño de reubicación y nuestros protocolos de estudio podrían informar a otros proyectos de reubicación para especies de desierto. Nuestro estudio de caso resalta los beneficios de la combinación del monitoreo científico riguroso con acciones de manejo bien diseñadas y llevadas por la mitigación para reducir los efectos negativos del desarrollo sobre las especies de importancia para la conservación.


Assuntos
Conservação dos Recursos Naturais , Tartarugas , Animais , California , Colorado , Répteis , Sudoeste dos Estados Unidos
3.
Ecol Appl ; 29(2): e01832, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30589982

RESUMO

Anthropogenic climate change presents challenges and opportunities to the growth, reproduction, and survival of individuals throughout their life cycles. Demographic compensation among life-history stages has the potential to buffer populations from decline, but alternatively, compounding negative effects can lead to accelerated population decline and extinction. In montane ecosystems of the U.S. Pacific Northwest, increasing temperatures are resulting in a transition from snow-dominated to rain-dominated precipitation events, reducing snowpack. For ectotherms such as amphibians, warmer winters can reduce the frequency of critical minimum temperatures and increase the length of summer growing seasons, benefiting post-metamorphic stages, but may also increase metabolic costs during winter months, which could decrease survival. Lower snowpack levels also result in wetlands that dry sooner or more frequently in the summer, increasing larval desiccation risk. To evaluate how these challenges and opportunities compound within a species' life history, we collected demographic data on Cascades frog (Rana cascadae) in Olympic National Park in Washington state to parameterize stage-based stochastic matrix population models under current and future (A1B, 2040s, and 2080s) environmental conditions. We estimated the proportion of reproductive effort lost each year due to drying using watershed-specific hydrologic models, and coupled this with an analysis that relates 15 yr of R. cascadae abundance data with a suite of climate variables. We estimated the current population growth (λs ) to be 0.97 (95% CI 0.84-1.13), but predict that λs will decline under continued climate warming, resulting in a 62% chance of extinction by the 2080s because of compounding negative effects on early and late life history stages. By the 2080s, our models predict that larval mortality will increase by 17% as a result of increased pond drying, and adult survival will decrease by 7% as winter length and summer precipitation continue to decrease. We find that reduced larval survival drives initial declines in the 2040s, but further declines in the 2080s are compounded by decreases in adult survival. Our results demonstrate the need to understand the potential for compounding or compensatory effects within different life history stages to exacerbate or buffer the effects of climate change on population growth rates through time.


Assuntos
Mudança Climática , Ecossistema , Animais , Estações do Ano , Neve , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA