Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191465

RESUMO

Control noise is a limiting factor in the low-frequency performance of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). In this paper, we model the effects of using new sensors called Homodyne Quadrature Interferometers (HoQIs) to control the suspension resonances. We show that if we were to use HoQIs, instead of the standard shadow sensors, we could suppress resonance peaks up to tenfold more while simultaneously reducing the noise injected by the damping system. Through a cascade of effects, this will reduce the resonant cross-coupling of the suspensions, allow for improved stability for feed-forward control, and result in improved sensitivity of the detectors in the 10-20 Hz band. This analysis shows that improved local sensors, such as HoQIs, should be used in current and future detectors to improve low-frequency performance.

3.
Science ; 372(6548): 1333-1336, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34140386

RESUMO

The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems.

4.
Rev Sci Instrum ; 87(11): 114503, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910445

RESUMO

The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 10-18m/Hz with accuracy and precision of better than 1%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA