Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Asian Cardiovasc Thorac Ann ; 30(8): 894-905, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35837687

RESUMO

BACKGROUND: It remains unclear whether the Rho-kinase (ROCK) inhibition in combination with mechanical circulatory support (MCS) had a synergic protective effect on myocardial ischemia (MI)/reperfusion injury in therapeutic strategies for acute myocardial infarction (AMI). We report the results of an approach using a rat model consisting of a miniaturized cardiopulmonary bypass (CPB) and AMI. METHODS: A total of 25 male Wistar rats were randomized into 5 groups: (1) Sham: a suture was passed under the left anterior descending artery (LAD) creating no MI. A vehicle solution (0.9% saline) was injected intraperitoneally. (2) Myocardial ischemia (MI) + vehicle (MI + V): LAD was ligated for 30 min and reperfused for 120 min, followed by administration of vehicle solution. (3) MI + fasudil (MI + F): the work sequence of group 2, but the selective ROCK inhibitor fasudil (10 mg/kg) was administered instead. (4) MI + V + CPB: CPB was initiated 15 min after the ligation of the LAD to the end of the reperfusion, in addition to the work sequence in group 2. (5) In the MI + F + CPB group, the work sequence of group 4, but with fasudil administration (10 mg/kg). RESULTS: Measurements of cardiac function through conductance catheter indicated that the drop of + dP/dt after reperfusion was moderately limited in MI + F + CPB (vs. MI + V, dP/dt p = 0.22). The preload recruitable stroke work was moderately improved in the MI + F + CPB (p = 0.23) compared with the corresponding control animals (MI + V). Phosphorylated protein kinase B expression in the MI + V + CPB and MI + F + CPB was higher than that in MI + V (p = 0.33). CONCLUSION: Therefore, fasudil administration with MCS resulted in a moderately better left ventricular performance.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Animais , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Solução Salina/uso terapêutico , Resultado do Tratamento , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/uso terapêutico
2.
J Am Heart Assoc ; 10(6): e018097, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33666100

RESUMO

Background Cardiac surgery using cardiopulmonary bypass (CPB) frequently provokes a systemic inflammatory response syndrome, which is triggered by TLR4 (Toll-like receptor 4) and TNF-α (tumor necrosis factor α) signaling. Here, we investigated whether the adiponectin receptor 1 and 2 agonist AdipoRon modulates CPB-induced inflammation and cardiac dysfunction. Methods and Results Rats underwent CPB with deep hypothermic circulatory arrest and were finally weaned from the heart-lung machine. Compared with vehicle, AdipoRon application attenuated the CPB-induced impairment of mean arterial pressure following deep hypothermic circulatory arrest. During the weaning and postweaning phases, heart rate and mean arterial pressure in all AdipoRon animals (7 of 7) remained stable, while cardiac rhythm was irretrievably lost in 2 of 7 of the vehicle-treated animals. The AdipoRon-mediated improvements of cardiocirculatory parameters were accompanied by increased plasma levels of IL (interleukin) 10 and diminished concentrations of lactate and K+. In myocardial tissue, AdipoRon activated AMP-activated protein kinase (AMPK) while attenuating CPB-induced degradation of nuclear factor κB inhibitor α (IκBα), upregulation of TNF-α, IL-1ß, CCL2 (C-C chemokine ligand 2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inducible nitric oxide synthase. Correspondingly, in cultured cardiac myocytes, cardiac fibroblasts, and vascular endothelial cells, AdipoRon activated AMPK, upregulated IL-10, and attenuated activation of nuclear factor κB, as well as upregulation of TNF-α, IL-1ß, CCL2, NADPH oxidase, and inducible nitric oxide synthase induced by lipopolysaccharide or TNF-α. In addition, the treatment of cardiac myocytes with the AMPK activator 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside resulted in a similar inhibition of lipopolysaccharide- and TNF-α-induced inflammatory cell phenotypes as for AdipoRon. Conclusions Our observations indicate that AdipoRon attenuates CPB-induced inflammation and impairment of cardiac function through AMPK-mediated inhibition of proinflammatory TLR4 and TNF-α signaling in cardiac cells and upregulation of immunosuppressive IL-10.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Piperidinas/farmacologia , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Função Ventricular/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Ratos , Ratos Wistar , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia
3.
Sci Rep ; 10(1): 21669, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303866

RESUMO

After myocardial infarction (MI), epicardial cells reactivate their embryonic program, proliferate and migrate into the damaged tissue to differentiate into fibroblasts, endothelial cells and, if adequately stimulated, to cardiomyocytes. Targeting epicardium-derived stromal cells (EpiSC) by specific ligands might enable the direct imaging of EpiSCs after MI to better understand their biology, but also may permit the cell-specific delivery of small molecules to improve the post-MI healing process. Therefore, the aim of this study was to identify specific peptides by phage display screening to enable EpiSC specific cargo delivery by active targeting. To this end, we utilized a sequential panning of a phage library on cultured rat EpiSCs and then subtracted phage that nonspecifically bound blood immune cells. EpiSC specific phage were analyzed by deep sequencing and bioinformatics analysis to identify a total of 78 300 ± 31 900 different, EpiSC-specific, peptide insertion sequences. Flow cytometry of the five most highly abundant peptides (EP1, -2, -3, -7 or EP9) showed strong binding to EpiSCs but not to blood immune cells. The best binding properties were found for EP9 which was further studied by surface plasmon resonance (SPR). SPR revealed rapid and stable association of EpiSCs with EP9. As a negative control, THP-1 monocytes did not associate with EP9. Coupling of EP9 to perfluorocarbon nanoemulsions (PFCs) resulted in the efficient delivery of 19F cargo to EpiSCs and enabled their visualization by 19F MRI. Moreover, active targeting of EpiSCs by EP9-labelled PFCs was able to outcompete the strong phagocytic uptake of PFCs by circulating monocytes. In summary, we have identified a 7-mer peptide, (EP9) that binds to EpiSCs with high affinity and specificity. This peptide can be used to deliver small molecule cargos such as contrast agents to permit future in vivo tracking of EpiSCs by molecular imaging and to transfer small pharmaceutical molecules to modulate the biological activity of EpiSCs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Infarto do Miocárdio/patologia , Pericárdio/citologia , Pericárdio/diagnóstico por imagem , Células Estromais , Animais , Células Cultivadas , Fluorocarbonos , Humanos , Peptídeos , Ratos , Ressonância de Plasmônio de Superfície , Células THP-1
4.
Am J Physiol Heart Circ Physiol ; 319(5): H1123-H1141, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32986963

RESUMO

Calcific aortic valve disease (CAVD) is characterized by valvular fibrosis and calcification and driven by differentiating valvular interstitial cells (VICs). Expression data from patient biopsies suggest that transforming growth factor (TGF)-ß1 is implicated in CAVD pathogenesis. However, CAVD models using isolated VICs failed to deliver clear evidence on the role of TGF-ß1. Thus, employing cultures of aortic valve leaflets, we investigated effects of TGF-ß1 in a tissue-based three-dimensional (3-D) CAVD model. We found that TGF-ß1 induced phosphorylation of Mothers against decapentaplegic homolog (SMAD) 3 and expression of SMAD7, indicating effective downstream signal transduction in valvular tissue. Thus, TGF-ß1 increased VIC contents of rough endoplasmic reticulum, Golgi, and secretory vesicles as well as tissue levels of RNA and protein. In addition, TGF-ß1 raised expression of proliferation marker cyclin D1, attenuated VIC apoptosis, and upregulated VIC density. Moreover, TGF-ß1 intensified myofibroblastic VIC differentiation as evidenced by increased α-smooth muscle actin and collagen type I along with diminished vimentin expression. In contrast, TGF-ß1 attenuated phosphorylation of SMAD1/5/8 and upregulation of ß-catenin while inhibiting osteoblastic VIC differentiation as revealed by downregulation of osteocalcin expression, alkaline phosphatase activity, and extracellular matrix incorporation of hydroxyapatite. Collectively, these effects resulted in blocking of valvular tissue calcification and associated disintegration of collagen fibers. Instead, TGF-ß1 induced development of fibrosis. Overall, in a tissue-based 3-D CAVD model, TGF-ß1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of VICs, thus triggering dominant fibrosis. Simultaneously, by inhibiting SMAD1/5/8 activation and canonical Wnt/ß-catenin signaling, TGF-ß1 attenuates osteoblastic VIC differentiation, thus blocking valvular tissue calcification. These findings question a general phase-independent CAVD-promoting role of TGF-ß1.NEW & NOTEWORTHY Employing aortic valve leaflets as a tissue-based three-dimensional disease model, our study investigates the role of transforming growth factor (TGF)-ß1 in calcific aortic valve disease pathogenesis. We find that, by activating Mothers against decapentaplegic homolog 3, TGF-ß1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of valvular interstitial cells, thus triggering dominant fibrosis. Simultaneously, by inhibiting activation of Mothers against decapentaplegic homolog 1/5/8 and canonical Wnt/ß-catenin signaling, TGF-ß1 attenuates apoptosis and osteoblastic differentiation of valvular interstitial cells, thus blocking valvular tissue calcification. These findings question a general phase-independent calcific aortic valve disease-promoting role of TGF-ß1.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Animais , Valva Aórtica/ultraestrutura , Estenose da Valva Aórtica/patologia , Apoptose , Calcinose/patologia , Cálcio/metabolismo , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Fibrose , Ovinos , Proteína Smad7/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA