Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int Immunopharmacol ; 135: 112331, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795597

RESUMO

CCR5 may be involved in the pathogenesis of asthma; however, the underlying mechanisms remain unclear. In comparison with a mild asthma model, subepithelial fibrosis was more severe and CCR5 gene expression in the lungs was significantly higher in our recently developed murine model of steroid-resistant severe asthma. Treatment with the CCR5 antagonist, maraviroc, significantly suppressed the development of subepithelial fibrosis in bronchi, whereas dexamethasone did not. On the other hand, increases in leukocytes related to type 2 inflammation, eosinophils, Th2 cells, and group 2 innate lymphoid cells in the lungs were not affected by the treatment with maraviroc. Increases in neutrophils and total macrophages were also not affected by the CCR5 antagonist. However, increases in transforming growth factor (TGF)-ß-producing interstitial macrophages (IMs) were significantly reduced by maraviroc. The present results confirmed increases in CCR5-expressing IMs in the lungs of the severe asthma model. In conclusion, CCR5 on IMs plays significant roles in the development of subepithelial fibrosis in severe asthma through TGF-ß production in the lungs.

2.
Immunology ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786548

RESUMO

The mechanisms underlying the development of steroid resistance in asthma remain unclear. To establish whether as well as the mechanisms by which the activation of Janus kinases (JAKs) is involved in the development of steroid resistance in asthma, murine steroid-resistant models of the proliferation of group 2 innate lymphoid cells (ILC2s) in vitro and asthmatic airway inflammation in vivo were analysed. ILC2s in the lungs of BALB/c mice were sorted and then incubated with IL-33, thymic stromal lymphopoietin (TSLP), and/or IL-7 with or without dexamethasone (10 nM), the pan-JAK inhibitor, delgocitinib (1-10 000 nM), and/or the Bcl-xL inhibitor, navitoclax (1-100 nM), followed by the detection of viable and apoptotic cells. The anti-apoptotic factor, Bcl-xL was detected in ILC2s by flow cytometry. As a steroid-resistant asthma model, ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at a high dose of 500 µg four times. Dexamethasone (1 mg/kg, i.p.), delgocitinib (3-30 mg/kg, p.o.), or navitoclax (30 mg/kg, p.o.) was administered during the challenges. Cellular infiltration into the lungs was analysed by flow cytometry. Airway remodelling was histologically evaluated. The following results were obtained. (1) Cell proliferation concomitant with a decrease in apoptotic cells was induced when ILC2s were cultured with TSLP and/or IL-7, and was potently inhibited by dexamethasone. In contrast, when the culture with TSLP and IL-7 was performed in the presence of IL-33, the proliferative response exhibited steroid resistance. Steroid-resistant ILC2 proliferation was suppressed by delgocitinib in a concentration-dependent manner. (2) The culture with IL-33, TSLP, and IL-7 induced the overexpression of Bcl-xL, which was clearly inhibited by delgocitinib, but not by dexamethasone. When ILC2s were treated with navitoclax, insensitivity to dexamethasone was significantly cancelled. (3) The development of airway remodelling and the infiltration of ILC2s into the lungs in the asthma model were not suppressed by dexamethasone, but were dose-dependently inhibited by delgocitinib. Combination treatment with dexamethasone and either delgocitinib or navitoclax synergistically suppressed these responses. Therefore, JAKs appear to play significant roles in the induction of steroid resistance by up-regulating Bcl-xL in ILC2s. The inhibition of JAKs and Bcl-xL has potential as pharmacotherapy for steroid-resistant asthma, particularly that mediated by ILC2s.

3.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474369

RESUMO

Regulated necrosis, termed necroptosis, represents a potential therapeutic target for refractory cancer. Ceramide nanoliposomes (CNLs), considered potential chemotherapeutic agents, induce necroptosis by targeting the activating protein mixed lineage kinase domain-like protein (MLKL). In the present study, we examined the potential of pronecroptotic therapy using CNLs for refractory triple-negative breast cancer (TNBC), for which there is a lack of definite and effective therapeutic targets among the various immunohistological subtypes of breast cancer. MLKL mRNA expression in tumor tissues was significantly higher in TNBC patients than in those with non-TNBC subtypes. Similarly, among the 50 breast cancer cell lines examined, MLKL expression was higher in TNBC-classified cell lines. TNBC cell lines were more susceptible to the therapeutic effects of CNLs than the non-TNBC subtypes of breast cancer cell lines. In TNBC-classified MDA-MB-231 cells, the knockdown of MLKL suppressed cell death induced by CNLs or the active substance short-chain C6-ceramide. Accordingly, TNBC cells were prone to CNL-evoked necroptotic cell death. These results will contribute to the development of CNL-based pronecroptotic therapy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Apoptose , Necrose , Ceramidas/farmacologia
4.
Biol Pharm Bull ; 47(1): 227-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246609

RESUMO

Between 5 and 10% of asthma patients do not respond to glucocorticoid therapy. Experimental animal models are indispensable for investigating the pathogenesis of steroid-resistant asthma; however, the majority of murine asthma models respond well to glucocorticoids. We previously reported that multiple intratracheal administration of ovalbumin (OVA) at a high dose (500 µg/animal) induced steroid-insensitive airway eosinophilia and remodeling with lung fibrosis, whereas a low dose (5 µg/animal) caused steroid-sensitive responses. The aims of the present study were as follows: 1) to clarify whether airway hyperresponsiveness (AHR) in the two models is also insensitive and sensitive to a glucocorticoid, respectively, and 2) to identify steroid-insensitive genes encoding extracellular matrix (ECM) components and pro-fibrotic factors in the lung. In comparisons with non-challenged group, the 5- and 500-µg OVA groups both exhibited AHR to methacholine. Daily intraperitoneal treatment with dexamethasone (1 mg/kg) significantly suppressed the development of AHR in the 5-µg OVA group, but not in the 500-µg OVA group. Among genes encoding ECM components and pro-fibrotic factors, increased gene expressions of fibronectin and collagen types I, III, and IV as ECM components as well as 7 matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, transforming growth factor-ß1, and activin A/B as pro-fibrotic factors were insensitive to dexamethasone in the 500-µg OVA group, but were sensitive in the 5-µg OVA group. In conclusion, steroid-insensitive AHR developed in the 500-µg OVA group and steroid-insensitive genes encoding ECM components and pro-fibrotic factors were identified. Drugs targeting these molecules have potential in the treatment of steroid-resistant asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Animais , Camundongos , Glucocorticoides , Inibidor Tecidual de Metaloproteinase-1 , Asma/tratamento farmacológico , Asma/genética , Esteroides , Ovalbumina , Pulmão , Matriz Extracelular , Expressão Gênica , Dexametasona/farmacologia , Dexametasona/uso terapêutico
5.
Cells ; 12(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831258

RESUMO

Ceramides are an emerging class of anti-inflammatory lipids, and nanoscale ceramide-delivery systems are potential therapeutic strategies for inflammatory diseases. This study investigated the therapeutic effects of ceramide nanoliposomes (CNL) on type 2 inflammation-based asthma, induced by repeated ovalbumin (OVA) challenges. Asthmatic mice intratracheally treated with ceramide-free liposomes (Ghost) displayed typical airway remodeling including mucosal accumulation and subepithelial fibrosis, whereas, in CNL-treated mice, the degree of airway remodeling was significantly decreased. Compared to the Ghost group, CNL treatment unexpectedly failed to significantly influence formation of type 2 cytokines, including IL-5 and IL-13, known to facilitate pathogenic production of airway mucus predominantly comprising MUC5AC mucin. Interestingly, CNL treatment suppressed OVA-evoked hyperplasia of MUC5AC-generating goblet cells in the airways. This suggests that CNL suppressed goblet cell hyperplasia and airway mucosal accumulation independently of type 2 cytokine formation. Mechanistically, CNL treatment suppressed cell growth and EGF-induced activation of Akt, but not ERK1/2, in a human lung epithelial cell culture system recapitulating airway goblet cell hyperplasia. Taken together, CNL is suggested to have therapeutic effects on airway remodeling in allergic asthma by targeting goblet cell hyperplasia. These findings raise the potential of ceramide-based therapies for airway diseases, such as asthma.


Assuntos
Antineoplásicos , Asma , Humanos , Animais , Camundongos , Hiperplasia/patologia , Remodelação das Vias Aéreas , Líquido da Lavagem Broncoalveolar , Asma/patologia , Pulmão/patologia , Citocinas/farmacologia , Antineoplásicos/farmacologia
6.
Pathogens ; 11(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422624

RESUMO

Allergen immunotherapy (AIT), such as subcutaneous immunotherapy (SCIT), is a treatment targeting the causes of allergic diseases. The roles of extracellular vesicles (EVs), bilayer lipid membrane blebs released from all types of cells, in AIT have not been clarified. To examine the roles of EVs in SCIT, it was analyzed whether (1) EVs are phenotypically changed by treatment with SCIT, and (2) EVs derived from SCIT treatment suppress the function of group 2 innate lymphoid cells (ILC2s), which are major cells contributing to type 2 allergic inflammation. As a result, (1) expression of CD9, a canonical EV marker, was highly up-regulated by SCIT in a murine model of asthma; and (2) IL-5 production from ILC2s in vitro was significantly decreased by the addition of serum EVs derived from SCIT-treated but not non-SCIT-treated mice. In conclusion, it was indicated that EVs were transformed by SCIT, changing to a suppressive phenotype of type 2 allergic inflammation.

7.
Front Allergy ; 3: 981126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991310

RESUMO

Allergen-specific immunotherapy (AIT) is the only causative treatment for allergic diseases by modification of the immune response to allergens. A key feature of AIT is to induce immunotolerance to allergens by generating antigen-specific regulatory T (Treg) cells in allergic patients. Type 1 regulatory T (Tr1) cells and forkhead box protein 3 (Foxp3)-expressing Treg cells are well known among Treg cell subsets. Foxp3 was identified as a master transcription factor of Treg cells, and its expression is necessary for their suppressive activity. In contrast to Foxp3+ Treg cells, the master transcription factor of Tr1 cells has not been elucidated. Nevertheless, Tr1 cells are generally considered as a distinct subset of Treg cells induced in the periphery during antigen exposure in tolerogenic conditions and can produce large amounts of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor-ß, followed by down-regulation of the function of effector immune cells independently of Foxp3 expression. Since the discovery of Tr1 cells more than 20 years ago, research on Tr1 cells has expanded our understanding of the mechanism of AIT. Although the direct precursors and true identity of these cells continues to be disputed, we and others have demonstrated that Tr1 cells are induced in the periphery by AIT, and the induced cells are re-activated by antigens, followed by suppression of allergic symptoms. In this review, we discuss the immune mechanisms for the induction of Tr1 cells by AIT and the immune-suppressive roles of Tr1 cells in AIT.

8.
Int Immunopharmacol ; 110: 109037, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810490

RESUMO

Subgroups of patients with severe asthma showing marked increases in sputum eosinophils and/or neutrophils are insensitive to corticosteroids. Previous reports have shown that exogenous administration of an anti-inflammatory cytokine, interleukin (IL)-10 negatively regulated both eosinophilic and neutrophilic migration into tissues. The objective of this study was to elucidate whether intratracheal IL-10 administration suppresses asthmatic responses in a steroid-insensitive model of mice. Ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at 500 µg/animal four times. Dexamethasone (1 mg/kg, intraperitoneal) or IL-10 (25 ng/mouse, intratracheal) was administered during the multiple challenges. The number of leukocytes, expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-10 receptor in the lung, and the development of airway remodeling and hyperresponsiveness were evaluated after the fourth challenge. Consistent with our previous study, dexamethasone hardly suppressed the development of airway remodeling and hyperresponsiveness. Although intratracheal IL-10 administration did not affect the development of airway remodeling, the infiltration of eosinophils and neutrophils, and the development of airway hyperresponsiveness were significantly inhibited. Moreover, IL-10 administration significantly decreased the numbers of ICAM-1+ and VCAM-1+ pulmonary vascular endothelial cells, which express IL-10 receptor 1, even though neither production of eosinophilic nor neutrophilic cytokines in the lung was inhibited. Therefore, IL-10 can suppress eosinophil and neutrophil infiltration by inhibiting the proliferation of ICAM-1+ and VCAM-1+ pulmonary vascular endothelial cells, resulting in inhibition of airway hyperresponsiveness in steroid-insensitive asthmatic mice. IL-10 replacement therapy may be clinically useful for the treatment of steroid-insensitive asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Remodelação das Vias Aéreas , Animais , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Eosinófilos , Molécula 1 de Adesão Intercelular , Interleucina-10/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Receptores de Interleucina-10 , Esteroides/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Biochem Biophys Res Commun ; 611: 1-7, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35468412

RESUMO

Plasmalogen localized in the raft of mammalian cell membranes plays a role in the storage of polyunsaturated fatty acid (PUFA), and exists to a higher extent in malignant cells that survive, and even grow in hypoxic conditions. The biosynthesis of plasmalogen in mammalian cells has been reported to depend on aerobic conditions. Using liquid chromatography-tandem mass spectrometry, we found that the intracellular concentration of plasmalogen species containing a PUFA at the sn-2-position did not change for two days from the start of hypoxic culture in human colorectal cancer-derived Caco2 cells. At the third day of hypoxia, Caco2 cells showed the average increase rate of 2.6 times in ethanolamine plasmalogen and 2.9 times in choline plasmalogen depending on the molecular species compared with those in the second day of hypoxia. In normoxic culture, there was little quantitative change in any species of both ethanolamine and choline plasmalogens for three days. The up-regulations of mRNA of Ca2+-independent phospholipase A2ß and cytoplasmic phospholipase A2γ as well as the down-regulation of lysoplasmalogenase observed in hypoxia were suggested to be responsible for the increase of plasmalogen in Caco2 cells under hypoxia.


Assuntos
Neoplasias Colorretais , Plasmalogênios , Células CACO-2 , Ácidos Graxos Insaturados/metabolismo , Humanos , Hipóxia , Fosfolipases
10.
Eur J Pharmacol ; 916: 174732, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34971621

RESUMO

A certain population of asthma patients is resistant to steroid therapy, whereas the mechanisms remain unclear. One of characteristic features of steroid-resistant asthma patients is severe airway eosinophilia based on type-2 inflammation. Aims of this study were: 1) to develop a murine model of steroid-resistant asthma, 2) to elucidate that predominant cellular source of a type-2 cytokine, IL-5 was group 2 innate lymphoid cells (ILC2s), 3) to analyze pathogenic alteration of ILC2s in the severe asthma, and 4) to evaluate therapeutic potential of anti-IL-5 monoclonal antibody (mAb) on the steroid-resistant asthma. Ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at 5 or 500 µg/animal 4 times. Development of airway eosinophilia and remodeling in 5-µg OVA model were significantly suppressed by 1 mg/kg dexamethasone, whereas those in 500-µg OVA model were relatively insensitive to the dose of dexamethasone. ILC2s isolated from the lung of the steroid-insensitive model (500-µg OVA) produced significantly larger amounts of IL-5 in response to IL-33/TSLP than ILC2s from the steroid-sensitive model (5-µg OVA). Interestingly, TSLP receptor expression on ILC2s was up-regulated in the steroid-insensitive model. Treatment with anti-IL-5 mAb in combination with dexamethasone significantly suppressed the airway remodeling of the steroid-insensitive model. In conclusion, multiple intratracheal administration of a high dose of antigen induced steroid-insensitive asthma in sensitized mice. IL-5 was mainly produced from ILC2s, phenotype of which had been pathogenically altered probably through the up-regulation of TSLP receptors. IL-5 blockage could be a useful therapeutic strategy for steroid-resistant asthma.


Assuntos
Asma , Imunidade Inata , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Esteroides/uso terapêutico
11.
Chem Pharm Bull (Tokyo) ; 69(9): 905-912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470955

RESUMO

Herein, we describe the design and synthesis of cimetidine analogs, as well as their inhibitory activity toward the human multidrug and toxin extrusion transporter 1 (hMATE1), which is related to nephrotoxicity of drugs. Cimetidine is the histamine H2-receptor antagonist, but also inhibits hMATE1, which is known to cause renal impairment. We designed and synthesized cimetidine analogs to evaluate hMATE1 inhibitory activity to reveal whether the analogs could reduce the inhibition of hMATE1. The results showed that all analogs with an unsubstituted guanidino group exhibited hMATE1 inhibitory activity. On the other hand, there was a clear difference in the hMATE1 inhibitory activity for the other compounds. That is, compounds with a methylimidazole ring exhibited hMATE1 inhibition, while compounds with a phenyl ring did not. The results suggest that the ability to form hydrogen bonds at the azole moiety is strongly involved in the hMATE1 inhibition.


Assuntos
Azóis/farmacologia , Cimetidina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Azóis/química , Cimetidina/síntese química , Cimetidina/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
12.
Inflamm Res ; 70(5): 581-589, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33837438

RESUMO

OBJECTIVE: At least 3 years of sublingual immunotherapy (SLIT) is required to achieve long-term clinical tolerance for allergens. However, immunological changes with more than 3 years of SLIT have not yet been elucidated in detail. The present study investigated whether the numbers of regulatory T (Treg) cells and regulatory B (Breg) cells increased with 4 years of SLIT and if these increases correlated with clinical effects for pollinosis. METHODS: Seven Japanese cedar pollinosis patients received SLIT in 2014 or 2015 and continued treatment until May 2019. In May 2017 and May 2019, peripheral blood mononuclear cells (PBMCs) were collected from the patients, and analyzed by flow cytometer. RESULTS: (1) The visual analogue scale (VAS) was significantly higher in 2019 than in 2017. (2) The percentages of Foxp3+ Treg cells, type 1 regulatory T (Tr1) cells, and Breg cells in PBMCs were significantly higher in 2019 than in 2017. (3) The percentage of Foxp3+ Treg cells in PBMCs positively correlated with VAS, whereas those of Tr1 cells and Breg cells did not. CONCLUSIONS: These results suggest that 4 years of SLIT is needed to achieve sustained increases in Foxp3+ Treg cells, which are closely associated with the efficacy of SLIT.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Rinite Alérgica Sazonal/terapia , Imunoterapia Sublingual , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Alérgenos/imunologia , Linfócitos B Reguladores/imunologia , Cryptomeria/imunologia , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Pólen/imunologia , Rinite Alérgica Sazonal/sangue , Rinite Alérgica Sazonal/imunologia
13.
Cancer Treat Res Commun ; 27: 100364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812182

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy due to the tumor's acquisition of chemoresistance to platinum-based chemotherapy. To solve this problem, we conducted RNAi-based large-scale screening and determined that tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE-1) is a key molecule involved in the platinum resistance of ovarian cancer cells. Recently, a variety of studies have investigated that small extracellular vesicles (sEVs) contribute to the communication between cancer cells, including the development of chemoresistance in ovarian cancer. The purpose of our study is to determine if sEVs-derived TIE-1 is involved in the chemoresistance of ovarian cancer cells. MATERIALS AND METHODS: TIE-1-overexpressed TOV112D cells, termed TOV112DTIE-1 cells, were established, and sEVs were isolated from TOV112DTIE-1 cells supernatants by ultracentrifugation. We assessed cisplatin sensitivity in recipient cells with TOV112DTIE-1-derived sEVs by cell-Titer Glo kit. We also asked whether sEV-derived TIE-1 suppressed the DNA damage response in recipient cells and evaluated the DNA damage response by counting cells positive for DNA damage foci. RESULTS: TIE-1 was contained within sEVTIE-1 derived from the cellular supernatant of TOV112DTIE-1. We showed that sEV-derived TIE-1 decreased chemosensitivity to cisplatin by suppressing the DNA damage response in recipient cells. CONCLUSION: Our findings suggest that sEV-derived TIE-1 could be a new therapeutic target for refractory ovarian cancer.


Assuntos
Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Vesículas Extracelulares/genética , Neoplasias Ovarianas/genética , Receptor de TIE-1/genética , Antineoplásicos/farmacologia , Comunicação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptor de TIE-1/metabolismo , Transfecção
14.
FASEB J ; 35(2): e21287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33423335

RESUMO

Regulation of sphingolipid metabolism plays a role in cellular homeostasis, and dysregulation of these pathways is involved in cancer progression. Previously, our reports identified ceramide as an anti-metastatic lipid. In the present study, we investigated the biochemical alterations in ceramide-centered metabolism of sphingolipids that were associated with metastatic potential. We established metastasis-prone sublines of SKOV3 ovarian cancer cells using an in vivo selection method. These cells showed decreases in ceramide levels and ceramide synthase (CerS) 2 expression. Moreover, CerS2 downregulation in ovarian cancer cells promoted metastasis in vivo and potentiated cell motility and invasiveness. Moreover, CerS2 knock-in suppressed the formation of lamellipodia required for cell motility in this cell line. In order to define specific roles of ceramide species in cell motility controlled by CerS2, the effect of exogenous long- and very long-chain ceramide species on the formation of lamellipodia was evaluated. Treatment with distinct ceramides increased cellular ceramides and had inhibitory effects on the formation of lamellipodia. Interestingly, blocking the recycling pathway of ceramides by a CerS inhibitor was ineffective in the suppression of exogenous C24:1 -ceramide for the formation of lamellipodia. These results suggested that C24:1 -ceramide, a CerS2 metabolite, predominantly suppresses the formation of lamellipodia without the requirement for deacylation/reacylation. Moreover, knockdown of neutral ceramidase suppressed the formation of lamellipodia concomitant with upregulation of C24:1 -ceramide. Collectively, the CerS2-C24:1 -ceramide axis, which may be countered by neutral ceramidase, is suggested to limit cell motility and metastatic potential. These findings may provide insights that lead to further development of ceramide-based therapy and biomarkers for metastatic ovarian cancer.


Assuntos
Movimento Celular , Ceramidas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/metabolismo , Pseudópodes/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Ceramidas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Pseudópodes/efeitos dos fármacos , Esfingosina N-Aciltransferase/antagonistas & inibidores , Esfingosina N-Aciltransferase/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
15.
J Epidemiol ; 31(1): 65-76, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31932529

RESUMO

BACKGROUND: We established a community-based cohort study to assess the long-term impact of the Great East Japan Earthquake on disaster victims and gene-environment interactions on the incidence of major diseases, such as cancer and cardiovascular diseases. METHODS: We asked participants to join our cohort in the health check-up settings and assessment center based settings. Inclusion criteria were aged 20 years or over and living in Miyagi or Iwate Prefecture. We obtained information on lifestyle, effect of disaster, blood, and urine information (Type 1 survey), and some detailed measurements (Type 2 survey), such as carotid echography and calcaneal ultrasound bone mineral density. All participants agreed to measure genome information and to distribute their information widely. RESULTS: As a result, 87,865 gave their informed consent to join our study. Participation rate at health check-up site was about 70%. The participants in the Type 1 survey were more likely to have psychological distress than those in the Type 2 survey, and women were more likely to have psychological distress than men. Additionally, coastal residents were more likely to have higher degrees of psychological distress than inland residents, regardless of sex. CONCLUSION: This cohort comprised a large sample size and it contains information on the natural disaster, genome information, and metabolome information. This cohort also had several detailed measurements. Using this cohort enabled us to clarify the long-term effect of the disaster and also to establish personalized prevention based on genome, metabolome, and other omics information.


Assuntos
Terremotos/estatística & dados numéricos , Interação Gene-Ambiente , Angústia Psicológica , Adulto , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Pesquisa Participativa Baseada na Comunidade , Desastres , Feminino , Genoma , Humanos , Incidência , Japão/epidemiologia , Estilo de Vida , Masculino , Metaboloma , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Inquéritos e Questionários , Adulto Jovem
16.
Cancers (Basel) ; 12(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604863

RESUMO

Tyrosine kinase receptor TIE-1 plays a critical role in angiogenesis and blood-vessel stability. In recent years, increased TIE-1 expression has been observed in many types of cancers; however, the biological significance and underlying mechanisms remain unknown. Thus, in the present study, we investigated the tumor biological functions of TIE-1 in ovarian cancer. The treatment of SKOV3 ovarian-cancer cells with siRNA against TIE-1 decreased the expression of key molecules in the PI3K/Akt signaling pathway, such as p110α and phospho-Akt, suggesting that TIE-1 is related to the PI3K/Akt pathway. Furthermore, the knockdown of TIE-1 significantly decreased cell proliferation in high-PI3K-expressing cell lines (SKOV3, CAOV3) but not low-PI3K-expressing cell lines (TOV112D, A2780). These results suggested that inhibition of TIE-1 decreases cell growth in high-PI3K-expressing cells. Moreover, in low-PI3K-expressing TOV112D ovarian-cancer cells, TIE-1 overexpression induced PI3K upregulation and promoted a PI3K-mediated cell proliferative phenotype. Mechanistically, TIE-1 participates in cell growth and proliferation by regulating the PI3K/Akt signaling pathway. Taken together, our findings strongly implicate TIE-1 as a novel therapeutic target in high-PI3K-expressing ovarian-cancer cells.

17.
Yonago Acta Med ; 63(2): 95-98, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494214

RESUMO

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is an aggressive type of thyroid cancer, and its metastasis requires cell motility. Ceramide is involved in a variety of biological processes, including inflammation, cell signaling, cell motility, and induction of apoptosis, however has not previously been reported to inhibit the motility of ATC cells. We evaluated the effect of short chain C6-ceramide on motility of ATC cells. METHODS: Cell motility of 8305C thyroid carcinoma cell line treated with C6-ceramide was assessed using a transwell migration assay and a pseudopodia formation assay. RESULTS: Treatment with 10 µM C6-ceramide resulted in significantly fewer migratory cells than control treatment in a transwell migration assay (P < 0.002). In condition medium, 82.6% of C6-ceramide-treated cells formed lamellipodia. Importantly, treatment with 10 µM C6-ceramide drastically decreased the number of cells forming lamellipodia by 17.6% (P < 0.01). CONCLUSION: Our results suggest that treatment with a low concentration of ceramide may prevent metastasis and recurrence of ATC by inhibiting cell motility. Further studies are necessary to investigate the mechanism of inhibition of cell motility by ceramide. Ceramide shows promise as a therapeutic treatment for ATC.

18.
Cells ; 9(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151027

RESUMO

Several non-apoptotic regulated cell death pathways have been recently reported. Necroptosis, a form of necrotic-regulated cell death, is characterized by the involvement of receptor-interacting protein kinases and/or the pore-forming mixed lineage kinase domain-like protein. Recent evidence suggests a key role for lipidic molecules in the regulation of necroptosis. The purpose of this mini-review is to outline the regulation of necroptosis by sphingolipids and phospholipids.


Assuntos
Necroptose/fisiologia , Fosfolipídeos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Esfingolipídeos/metabolismo , Animais , Ceramidas/genética , Ceramidas/metabolismo , Humanos , Proteínas Quinases/metabolismo
19.
J Pharmacol Sci ; 141(4): 139-145, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31744690

RESUMO

Type 1 regulatory T (Tr1) cells are CD4+ T cells that produce a large amount of IL-10, an anti-inflammatory cytokine. However, it has not been fully elucidated whether Tr1 cells suppress allergic asthma. In this study, the effects of adoptive transfer of in vitro-induced Tr1 cells on allergic asthma were evaluated. Splenocytes from ovalbumin (OVA)-sensitized BALB/c mice were cultured with OVA, IL-21, IL-27, and TGF-ß. After culture, IL-10-producing CD4+ T cells were isolated by Dynabeads mouse CD4 and IL-10 secretion assay, and analyzed by flow cytometry. Purified Tr1 cells (IL-10+ CD4+ T cells) were intravenously injected into OVA-sensitized BALB/c mice. The recipient mice were intratracheally challenged with OVA. Airway hyperresponsiveness to methacholine was assessed by the forced oscillation technique, followed by bronchoalveolar lavage (BAL). Almost all of the induced IL-10-producing CD4+ T cells were negative for interferon-γ, IL-4, IL-17A, and forkhead box P3, suggesting that the cells were Tr1 cells. The adoptive transfer of Tr1 cells significantly suppressed the development of airway hyperresponsiveness, and increases in IL-5, eosinophils, and neutrophils in BAL fluid. In conclusion, we demonstrated that Tr1 cells suppressed allergic asthma in mice.


Assuntos
Transferência Adotiva , Anti-Inflamatórios/metabolismo , Ovalbumina/metabolismo , Hipersensibilidade Respiratória/terapia , Linfócitos T Reguladores/metabolismo , Animais , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento
20.
Nihon Yakurigaku Zasshi ; 154(1): 17-22, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31308345

RESUMO

Subcutaneous immunotherapy (SCIT) is a causative treatment for allergic diseases. More recently, it has become clear that regulatory T (Treg) cells are increased by SCIT. Treg cells are generally divided into two main groups: 1) CD25+ Foxp3+ CD4+ T cells (Foxp3+ Treg cells) and 2) IL-10-producing Foxp3- CD4+ T cells (Tr1 cells). We demonstrated that the number of Tr1 cells in peripheral blood mononuclear cells in SCIT-treated pollinosis patients were significantly higher than that in non-SCIT-treated patients, but Foxp3+ Treg cells were not. Consistent with the results of human peripheral blood, Tr1 cells were increased in the lungs of asthmatic mice by SCIT, but Foxp3+ Treg cells were not. Moreover, in vitro-induced Tr1 cells were responded to the antigen to produce a large amount of IL-10 in in vitro and in vivo. Adoptive transfer of the induced Tr1 cells significantly suppressed the development of asthma. In any species of human and mouse, the increase in Tr1 cells rather than Foxp3+ Treg cells could be important for the effects of SCIT. The increased Tr1 cells by SCIT functionally suppressed allergic asthma probably via production of IL-10 in response to the specific antigen. Therefore, analyses of the induction mechanisms of Tr1 cells and search for compounds which induce Tr1 cells are thought to lead to development of more efficient SCIT.


Assuntos
Hipersensibilidade/terapia , Imunoterapia , Linfócitos T Reguladores/citologia , Animais , Fatores de Transcrição Forkhead , Humanos , Hipersensibilidade/imunologia , Leucócitos Mononucleares , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA