RESUMO
Immunoglobulin E (IgE) plays pivotal roles in allergic diseases through interaction with a high-affinity receptor (FcεRI). We established that Fab fragments of anti-IgE antibodies (HMK-12 Fab) rapidly dissociate preformed IgE-FcεRI complexes in a temperature-dependent manner and inhibit IgE-mediated anaphylactic reactions, even after allergen challenge. X-ray crystallographic studies revealed that HMK-12 Fab interacts with each of two equivalent epitopes on the Cε2 homodimer domain involved in IgE F(ab')2. Consequently, HMK-12 Fab-mediated targeting of Cε2 reduced the binding affinity of Fc domains and resulted in rapid removal of IgE from the receptor complex. This unexpected finding of allosteric inhibition of IgE-FcεRI interactions by simultaneous targeting of two epitope sites on the Cε2 homodimer domain of IgE F(ab')2 may have implications for the development of novel therapies for allergic disease.
Assuntos
Epitopos , Imunoglobulina E , Fragmentos Fab das Imunoglobulinas , Receptores de IgE , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Receptores de IgE/imunologia , Receptores de IgE/metabolismo , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Epitopos/imunologia , Animais , Regulação Alostérica , Cristalografia por Raios X , Camundongos , Ligação Proteica , Camundongos Endogâmicos BALB C , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/química , Humanos , Anafilaxia/imunologiaRESUMO
Crohn's disease is a chronic, debilitating, inflammatory bowel disease. Here, we report a critical role of phospholipase C-ß3 (PLC-ß3) in intestinal homeostasis. In PLC-ß3-deficient mice, exposure to oral dextran sodium sulfate induced lethality and severe inflammation in the small intestine. The lethality was due to PLC-ß3 deficiency in multiple non-hematopoietic cell types. PLC-ß3 deficiency resulted in reduced Wnt/ß-catenin signaling, which is essential for homeostasis and the regeneration of the intestinal epithelium. PLC-ß3 regulated the Wnt/ß-catenin pathway in small intestinal epithelial cells (IECs) at transcriptional, epigenetic, and, potentially, protein-protein interaction levels. PLC-ß3-deficient IECs were unable to respond to stimulation by R-spondin 1, an enhancer of Wnt/ß-catenin signaling. Reduced expression of PLC-ß3 and its signature genes was found in biopsies of patients with ileal Crohn's disease. PLC-ß regulation of Wnt signaling was evolutionally conserved in Drosophila. Our data indicate that a reduction in PLC-ß3-mediated Wnt/ß-catenin signaling contributes to the pathogenesis of ileal Crohn's disease.
Assuntos
Doença de Crohn , Fosfolipase C beta , Via de Sinalização Wnt , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Doença de Crohn/genética , Fosfolipase C beta/metabolismo , Fosfolipase C beta/genética , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Íleo/patologia , Íleo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
BACKGROUND: Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as senescence-associated secretory phenotype (SASP), some of which are produced by the NLRP3 inflammasome. Here, we present evidence that the NLRP1 inflammasome is a DNA damage sensor and a key mediator of senescence. METHODS: Senescence was induced in fibroblasts in vitro and in mice. Cellular senescence was assessed by Western blot analysis of several proteins, including p16, p21, p53, and SASP factors, released in the culture media or serum. Inflammasome components, including NLRP1, NLRP3 and GSDMD were knocked out or silenced using siRNAs. RESULTS: In vitro and in vivo results suggest that the NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP factors in a Gasdermin D (GSDMD)-dependent manner. Mechanistically, the NLRP1 inflammasome is activated in response to genomic damage detected by the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS). CONCLUSION: Our findings show that NLRP1 is a cGAS-dependent DNA damage sensor during senescence and a mediator of SASP release through GSDMD. This study advances the knowledge on the biology of the NLRP1 inflammasome and highlights this pathway as a potential pharmcological target to modulate senescence.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Senescência Celular , Dano ao DNA , Fibroblastos , Inflamassomos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato , Fenótipo Secretor Associado à Senescência , Animais , Inflamassomos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fibroblastos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas NLR/metabolismo , Proteínas NLR/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Células Cultivadas , Camundongos Knockout , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , GasderminasRESUMO
Allergic rhinitis (AR) is caused by type I hypersensitivity reaction in the nasal tissues. The interaction between CD300f and its ligand ceramide suppresses immunoglobulin E (IgE)-mediated mast cell activation. However, whether CD300f inhibits the development of allergic rhinitis (AR) remains elusive. We aimed to investigate the roles of CD300f in the development of AR and the effectiveness of intranasal administration of ceramide liposomes on AR in murine models. We used ragweed pollen-induced AR models in mice. Notably, CD300f deficiency did not significantly influence the ragweed-specific IgE production, but increased the frequency of mast cell-dependent sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in our models. Similar results were also obtained for MCPT5-exprssing mast cell-specific loss of CD300f. Importantly, intranasal administration of ceramide liposomes reduced the frequency of sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in AR models. Thus, CD300f-ceramide interaction, predominantly in mast cells, alleviates the symptoms and progression of AR. Therefore, intranasal administration of ceramide liposomes may be a promising therapeutic approach against AR by targeting CD300f.
Assuntos
Lipossomos , Rinite Alérgica , Animais , Camundongos , Administração Intranasal , Espirro , Ceramidas , Modelos Animais de Doenças , Rinite Alérgica/tratamento farmacológico , Imunoglobulina E , Mucosa Nasal , Camundongos Endogâmicos BALB C , OvalbuminaRESUMO
The penetration of allergens through the epithelial layer is the initial step in the development of allergic conjunctivitis. Although pollinosis patients manifest symptoms within minutes after pollen exposure, the mechanisms of the rapid transport of the allergens remain unclear. In the present study, we found that the instillation of pollen shells rapidly induces a large number of goblet cell-associated antigen passages (GAPs) in the conjunctiva. Antigen acquisition by stromal cells, including macrophages and CD11b+ dendritic cells, correlated with surface GAP formation. Furthermore, a substantial amount of antigen was transported to the stroma during the first 10 minutes of pollen exposure, which was sufficient for the full induction of an allergic conjunctivitis mouse model. This inducible, rapid GAP formation and antigen acquisition were suppressed by topical lidocaine or trigeminal nerve ablation, indicating that the sensory nervous system plays an essential role. Interestingly, pollen shell-stimulated GAP formation was not suppressed by topical atropine, suggesting that the conjunctival GAPs and intestinal GAPs are differentially regulated. These results identify pollen shell-induced GAP as a therapeutic target for allergic conjunctivitis.
Assuntos
Conjuntivite Alérgica , Animais , Camundongos , Humanos , Conjuntivite Alérgica/diagnóstico , Conjuntivite Alérgica/tratamento farmacológico , Células Caliciformes , Alérgenos , Pólen , Túnica ConjuntivaRESUMO
Background: Recently, we have developed a method to identify IgE cross-reactive allergens. However, the mechanism by which IgE cross-reactive allergens cause food allergy is not yet fully understood how. In this study, we aimed to understand the underlying pathogenesis by identifying food allergens that cross-react with house dust mite allergens in a murine model. Material and methods: Allergenic protein microarray analysis was conducted using serum from mice intraperitoneally injected with Dermatophagoides pteronyssinus (Der p) extract plus alum or alum alone as controls. Der p, Dermatophagoides farinae (Der f), coho salmon extract-sensitized and control mice were analyzed. Serum levels of IgE against Der p, Der f, coho salmon extract, protein fractions of coho salmon extract separated by ammonium sulfate precipitation and anion exchange chromatography, and recombinant coho salmon tropomyosin or actin were measured by an enzyme-linked immunosorbent assay. A murine model of cutaneous anaphylaxis or oral allergy syndrome (OAS) was established in Der p extract-sensitized mice stimulated with coho salmon extract, tropomyosin, or actin. Results: Protein microarray analysis showed that coho salmon-derived proteins were highly bound to serum IgE in Der p extract-sensitized mice. Serum IgE from Der p or Der f extract-sensitized mice was bound to coho salmon extract, whereas serum IgE from coho salmon extract-sensitized mice was bound to Der p or Der f extract. Analysis of the murine model showed that cutaneous anaphylaxis and oral allergic reaction were evident in Der p extract-sensitized mice stimulated by coho salmon extract. Serum IgE from Der p or Der f extract-sensitized mice was bound strongly to protein fractions separated by anion exchange chromatography of coho salmon proteins precipitated with 50% ammonium sulfate, which massively contained the approximately 38 kDa protein. We found that serum IgE from Der p extract-sensitized mice was bound to recombinant coho salmon tropomyosin. Der p extract-sensitized mice exhibited cutaneous anaphylaxis in response to coho salmon tropomyosin. Conclusion: Our results showed IgE cross-reactivity of tropomyosin between Dermatophagoides and coho salmon which illustrates salmon allergy following sensitization with the house dust mite Dermatophagoides. Our method for identifying IgE cross-reactive allergens will help understand the underlying mechanisms of food allergies.
Assuntos
Anafilaxia , Oncorhynchus kisutch , Animais , Camundongos , Tropomiosina , Actinas , Salmão , Sulfato de Amônio , Modelos Animais de Doenças , Pyroglyphidae , Alérgenos , Imunoglobulina ERESUMO
Inflammasome sensors detect pathogen- and danger-associated molecular patterns and promote inflammation and pyroptosis1. NLRP1 was the first inflammasome sensor to be described, and its hyperactivation is linked to autoinflammatory disease and cancer2-6. However, the mechanism underlying the activation and regulation of NLRP1 has not been clearly elucidated4,7,8. Here we identify ubiquitously expressed endogenous thioredoxin (TRX) as a binder of NLRP1 and a suppressor of the NLRP1 inflammasome. The cryo-electron microscopy structure of human NLRP1 shows NLRP1 bound to Spodoptera frugiperda TRX. Mutagenesis studies of NLRP1 and human TRX show that TRX in the oxidized form binds to the nucleotide-binding domain subdomain of NLRP1. This observation highlights the crucial role of redox-active cysteines of TRX in NLRP1 binding. Cellular assays reveal that TRX suppresses NLRP1 inflammasome activation and thus negatively regulates NLRP1. Our data identify the TRX system as an intrinsic checkpoint for innate immunity and provide opportunities for future therapeutic intervention in NLRP1 inflammasome activation targeting this system.
Assuntos
Inflamassomos , Proteínas NLR , Tiorredoxinas , Humanos , Microscopia Crioeletrônica , Inflamassomos/metabolismo , Proteínas NLR/antagonistas & inibidores , Proteínas NLR/química , Proteínas NLR/metabolismo , Proteínas NLR/ultraestrutura , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Spodoptera , Proteínas de Insetos , Oxirredução , Cisteína/metabolismo , Imunidade InataRESUMO
Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.
Assuntos
Histiocitose , Receptor 7 Toll-Like , Animais , Camundongos , Citocinas/genética , Histiocitose/genética , Mutação/genética , Nucleosídeos , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genéticaRESUMO
Background: Patients with food allergy often suffer from atopic dermatitis, in which Staphylococcus aureus colonization is frequently observed. Staphylococcus aureus δ-toxin activates mast cells and promotes T helper 2 type skin inflammation in the tape-stripped murine skin. However, the physiological effects of δ-toxin present on the steady-state skin remain unknown. We aimed to investigate whether δ-toxin present on the steady-state skin impacts the development of food allergy. Material and methods: The non-tape-stripped skins of wild-type, KitW-sh/W-sh, or ST2-deficient mice were treated with ovalbumin (OVA) with or without δ-toxin before intragastric administration of OVA. The frequency of diarrhea, numbers of jejunum or skin mast cells, and serum levels of OVA-specific IgE were measured. Conventional dendritic cell 2 (cDC2) in skin and lymph nodes (LN) were analyzed. The cytokine levels in the skin tissues or culture supernatants of δ-toxin-stimulated murine keratinocytes were measured. Anti-IL-1α antibody-pretreated mice were analyzed. Results: Stimulation with δ-toxin induced the release of IL-1α, but not IL-33, in murine keratinocytes. Epicutaneous treatment with OVA and δ-toxin induced the local production of IL-1α. This treatment induced the translocation of OVA-loaded cDC2 from skin to draining LN and OVA-specific IgE production, independently of mast cells and ST2. This resulted in OVA-administered food allergic responses. In these models, pretreatment with anti-IL-1α antibody inhibited the cDC2 activation and OVA-specific IgE production, thereby dampening food allergic responses. Conclusion: Even without tape stripping, δ-toxin present on skin enhances epicutaneous sensitization to food allergen in an IL-1α-dependent manner, thereby promoting the development of food allergy.
Assuntos
Dermatite Atópica , Hipersensibilidade Alimentar , Camundongos , Animais , Staphylococcus aureus , Modelos Animais de Doenças , Proteína 1 Semelhante a Receptor de Interleucina-1 , Imunoglobulina E , Ovalbumina , ExotoxinasRESUMO
Gel-forming mucins secreted by conjunctival goblet cells have been implicated in the clearance of allergens, pathogens, and debris. However, their roles remain incompletely understood. Here we show that human and mouse conjunctival goblet cell mucins have Alcian blue-detectable sialic acids, but not sulfates in the steady state. Interestingly, Balb/c mouse strain lacks this sialylation due to a point mutation in a sialyltransferase gene, St6galnac1, which is responsible for sialyl-Tn synthesis. Introduction of intact St6galnac1 to Balb/c restores the sialylation of conjunctival goblet cell mucus. Sialylated mucus efficiently captures and encapsulates the allergen particles in an impenetrable layer, leading to the protection of mice from the development of allergic conjunctivitis. Expression of ST6GALNAC1 and sialyl-Tn is upregulated in humans under conditions with chronic stimuli. These results indicate that the sialylated glycans on the ocular mucins play an essential role in maintaining the conjunctival mucosa by protecting from the incoming foreign bodies such as allergen particles.
Assuntos
Células Caliciformes , Mucinas , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Mucinas/genética , Mucinas/metabolismo , Túnica Conjuntiva , Muco/metabolismo , AlérgenosRESUMO
Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as the senescence-associated secretory phenotype (SASP). Here, we present evidence that the inflammasome sensor, NLRP1, is a key mediator of senescence induced by irradiation both in vitro and in vivo. The NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP in Gasdermin D (GSDMD)-dependent manner as these responses are reduced in conditions of NLRP1 insufficiency or GSDMD inhibition. Mechanistically, the NLRP1 inflammasome is activated downstream of the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS) in response to genomic damage. These findings provide a rationale for inhibiting the NLRP1 inflammasome-GSDMD axis to treat senescence-driven disorders.
RESUMO
Oral allergy syndrome (OAS) is an IgE-mediated immediate food allergy that is localized to the oral mucosa. Pollen food allergy syndrome (PFAS), a pollinosis-associated OAS, is caused by cross-reactivity between food and pollen allergens. However, we need to more precisely understand the underlying pathogenesis of OAS/PFAS. In the present study, we developed a method to comprehensively identify cross-reactive allergens by using murine model of OAS and protein microarray technology. We focused on lip angioedema, which is one of the most common symptoms of OAS, and confirmed that mast cells reside in the tissues inside the lower lip of the mice. Interestingly, when the food allergen ovalbumin (OVA) was injected inside the lower lip of mice with high levels of OVA-specific IgE followed by an intravenous injection of the Evans blue dye, we found immediate dye extravasation in the skin of the neck in a mast cell-dependent manner. In addition, the degree of mast cell degranulation in the oral cavity, reflecting the severity of oral allergic responses, can be estimated by measuring the amount of extravasated dye in the skin. Therefore, we used this model of OAS to examine IgE cross-reactive allergens in vivo. Protein microarray analysis showed that serum IgE from mice intraperitoneally sensitized with ragweed pollen, one of the major pollens causing pollinosis, bound highly to protein extracts from several edible plants including black peppercorn and fennel. We confirmed that the levels of black pepper-specific IgE and fennel-specific IgE were significantly higher in the serum from ragweed pollen-sensitized mice than in the serum from non-sensitized control mice. Importantly, analysis of murine model of OAS showed that the injection of black pepper or fennel extract induced apparent oral allergic responses in ragweed pollen-sensitized mice. These results indicate IgE cross-reactivity of ragweed pollen with black pepper and fennel. In conclusion, we developed mouse model of OAS to identify IgE cross-reactive pollen and food allergens, which will help understand the pathogenesis of OAS/PFAS.
Assuntos
Fluorocarbonos , Foeniculum , Hipersensibilidade Alimentar , Piper nigrum , Rinite Alérgica Sazonal , Alérgenos/análise , Animais , Antígenos de Plantas , Modelos Animais de Doenças , Hipersensibilidade Alimentar/etiologia , Imunoglobulina E , Camundongos , Extratos Vegetais , PólenRESUMO
Human ß-defensin-3 (hBD-3) exhibits antimicrobial and immunomodulatory activities; however, its contribution to autophagy regulation remains unclear, and the role of autophagy in the regulation of the epidermal barrier in atopic dermatitis (AD) is poorly understood. Here, keratinocyte autophagy was restrained in the skin lesions of patients with AD and murine models of AD. Interestingly, hBD-3 alleviated the IL-4- and IL-13-mediated impairment of the tight junction (TJ) barrier through keratinocyte autophagy activation, which involved aryl hydrocarbon receptor (AhR) signaling. While autophagy deficiency impaired the epidermal barrier and exacerbated inflammation, hBD-3 attenuated skin inflammation and enhanced the TJ barrier in AD. Importantly, hBD-3-mediated improvement of the TJ barrier was abolished in autophagy-deficient AD mice and in AhR-suppressed AD mice, suggesting a role for hBD-3-mediated autophagy in the regulation of the epidermal barrier and inflammation in AD. Thus, autophagy contributes to the pathogenesis of AD, and hBD-3 could be used for therapeutic purposes.
Assuntos
Dermatite Atópica , beta-Defensinas , Animais , Autofagia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Queratinócitos/patologia , Camundongos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , beta-Defensinas/genética , beta-Defensinas/metabolismo , beta-Defensinas/uso terapêuticoRESUMO
Mucosal mast cells (MMCs) localized in the intestinal mucosa play a key role in the development of IgE-mediated food allergies. Recent advances have revealed that MMCs are a distinctly different population from connective tissue mast cells localized in skin and other connective tissues. MMCs are inducible and transient cells that arise from bone marrow-derived mast cell progenitors, and their numbers increase rapidly during mucosal allergic inflammation. However, the mechanism of the dramatic expansion of MMCs and their cell functions are not well understood. Here, we review recent findings on the mechanisms of MMC differentiation and expansion, and we discuss the potential for the inducers of differentiation and expansion to serve as targets for food allergy therapy. In addition, we also discuss the mechanism by which oral immunotherapy, a promising treatment for food allergy patients, induces unresponsiveness to food allergens and the roles of MMCs in this process. Research focusing on MMCs should provide useful information for understanding the underlying mechanisms of food allergies in order to further advance the treatment of food allergies.
Assuntos
Hipersensibilidade Alimentar , Mastócitos , Células do Tecido Conjuntivo , Hipersensibilidade Alimentar/terapia , Humanos , Mucosa Intestinal , LinfócitosRESUMO
Rodent mast cells are classified into two major subsets, mucosal mast cells (MMCs) and connective tissue mast cells. MMCs arise from mast cell progenitors that are mobilized from the bone marrow to mucosal tissues in response to allergic inflammation or helminth infection. TGF-ß is known as an inducer of MMC differentiation in mucosal tissues, but we have previously found that Notch receptor-mediated signaling also leads to the differentiation. Here, we examined the relationship between Notch and TGF-ß signaling in MMC differentiation using mouse bone marrow-derived mast cells (BMMCs). We found that the coexistence of Notch and TGF-ß signaling markedly upregulates the expression of MMC markers, mouse mast cell protease (mMCP)-1, mMCP-2, and αE integrin/CD103, more than Notch or TGF-ß signaling alone, and that their signals act interdependently to induce these marker expressions. Notch and TGF-ß-mediated transcription of MMC marker genes were both dependent on the TGF-ß signaling transducer SMAD4. In addition, we also found that Notch signaling markedly upregulated mMCP-1 and mMCP-2 expression levels through epigenetic deregulation of the promoter regions of these genes, but did not affect the promoter of the CD103-encoding gene. Moreover, forced expression of the constitutively active Notch2 intracellular domain in BMMCs showed that Notch signaling promotes the nuclear localization of SMADs 3 and 4 and causes SMAD4-dependent gene transcription. These findings indicate that Notch and TGF-ß signaling play interdependent roles in inducing the differentiation and maturation of MMCs. These roles may contribute to the rapid expansion of the number of MMCs during allergic mucosal inflammation.
Assuntos
Mastócitos , Fator de Crescimento Transformador beta , Animais , Expressão Gênica , Inflamação/metabolismo , Mastócitos/metabolismo , Camundongos , Mucosa , Fator de Crescimento Transformador beta/metabolismoRESUMO
Immune responses contribute to tissue injury and repair during and after ischemic stroke. However, the spatiotemporal and initiating molecular events remain incompletely understood. Here, we show that mice deficient in the phosphatidylserine receptor CD300a, which is highly expressed on brain myeloid cells including Ly6Chi monocytes, exhibited ameliorated neurological deficit after middle cerebral artery occlusion (MCAO). CD300a inhibited signaling through the CD300b-DNAX-activation protein 12 (DAP12) signaling pathway to prevent efferocytosis of apoptotic cells. Deficiency of CD300a enhanced efferocytosis by myeloid cells infiltrating the brain as early as 1 hour after MCAO and reduced release of damage-associated molecular patterns from dead cells, resulting in milder inflammation in the penumbral region. Treatment with an anti-CD300a neutralizing antibody ameliorated the neurological deficit after MCAO. These findings reveal an important role of efferocytosis in the super-acute phase of ischemic stroke pathology and identified CD300a as a target for immunotherapy in treating ischemic stroke.
Assuntos
AVC Isquêmico/imunologia , Células Mieloides/imunologia , Neurônios/imunologia , Receptores Imunológicos/imunologia , Animais , Encéfalo/imunologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , FagocitoseRESUMO
The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.