Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Genet ; 56(6): 1090-1099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839884

RESUMO

Restless legs syndrome (RLS) affects up to 10% of older adults. Their healthcare is impeded by delayed diagnosis and insufficient treatment. To advance disease prediction and find new entry points for therapy, we performed meta-analyses of genome-wide association studies in 116,647 individuals with RLS (cases) and 1,546,466 controls of European ancestry. The pooled analysis increased the number of risk loci eightfold to 164, including three on chromosome X. Sex-specific meta-analyses revealed largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus annotation prioritized druggable genes such as glutamate receptors 1 and 4, and Mendelian randomization indicated RLS as a causal risk factor for diabetes. Machine learning approaches combining genetic and nongenetic information performed best in risk prediction (area under the curve (AUC) = 0.82-0.91). In summary, we identified targets for drug development and repurposing, prioritized potential causal relationships between RLS and relevant comorbidities and risk factors for follow-up and provided evidence that nonlinear interactions are likely relevant to RLS risk prediction.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndrome das Pernas Inquietas , Síndrome das Pernas Inquietas/genética , Humanos , Fatores de Risco , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Análise da Randomização Mendeliana , Aprendizado de Máquina
2.
Nat Neurosci ; 27(5): 862-872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528203

RESUMO

The mammalian telencephalon contains distinct GABAergic projection neuron and interneuron types, originating in the germinal zone of the embryonic basal ganglia. How genetic information in the germinal zone determines cell types is unclear. Here we use a combination of in vivo CRISPR perturbation, lineage tracing and ChIP-sequencing analyses and show that the transcription factor MEIS2 favors the development of projection neurons by binding enhancer regions in projection-neuron-specific genes during mouse embryonic development. MEIS2 requires the presence of the homeodomain transcription factor DLX5 to direct its functional activity toward the appropriate binding sites. In interneuron precursors, the transcription factor LHX6 represses the MEIS2-DLX5-dependent activation of projection-neuron-specific enhancers. Mutations of Meis2 result in decreased activation of regulatory enhancers, affecting GABAergic differentiation. We propose a differential binding model where the binding of transcription factors at cis-regulatory elements determines differential gene expression programs regulating cell fate specification in the mouse ganglionic eminence.


Assuntos
Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Fatores de Transcrição , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Desenvolvimento Embrionário/fisiologia , Elementos Facilitadores Genéticos/genética , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Diferenciação Celular/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Neurogênese/fisiologia , Proteínas do Tecido Nervoso
3.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485550

RESUMO

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , MicroRNAs , Transtornos dos Movimentos , Adolescente , Criança , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Haploinsuficiência/genética , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Tremor
4.
Ann Neurol ; 93(2): 330-335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333996

RESUMO

Infantile striatonigral degeneration is caused by a homozygous variant of the nuclear-pore complex (NPC) gene NUP62, involved in nucleo-cytoplasmic trafficking. By querying sequencing-datasets of patients with dystonia and/or Leigh(-like) syndromes, we identified 3 unrelated individuals with biallelic variants in NUP54. All variants clustered in the C-terminal protein region that interacts with NUP62. Associated phenotypes were similar to those of NUP62-related disease, including early-onset dystonia with dysphagia, choreoathetosis, and T2-hyperintense lesions in striatum. In silico and protein-biochemical studies gave further evidence for the argument that the variants were pathogenic. We expand the spectrum of NPC component-associated dystonic conditions with localized basal-ganglia abnormalities. ANN NEUROL 2023;93:330-335.


Assuntos
Distonia , Distúrbios Distônicos , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Corpo Estriado , Distonia/genética , Distúrbios Distônicos/genética , Neostriado , Complexo de Proteínas Formadoras de Poros Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA