Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(8): 10114-10124, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33169283

RESUMO

During washing of radiologically impacted building surfaces, penetration of radionuclide ions into complex solids associated with these surfaces may occur. This study investigates the penetration of 137Cs, 85Sr, and 152Eu solutions into numerous common building materials and radionuclide behavior when these materials were exposed to a static bath or low-pressure flow of tap water, 0.1 M potassium chloride (KCl), and 0.5 M KCl. The decontamination efficacy and the depth profile for residual contamination were measured to determine the conditions under which applying a wash solution has benefit compared to physically removing the surface material. On asphalt, 70-80% of the radionuclides were found to be within 0.02 mm of the surface. Concrete is more porous than asphalt, and 80% of the radionuclides were within 0.2 mm of the surface for 137Cs and 152Eu and 50-80% for 85Sr. Water effectively removed all contaminants from hard nonporous surfaces. Finally, this paper illustrates that a wash penalty factor concept-defined as ratio of the depth at which 50% of the radioactivity is found in the washed sample divided by the depth at which 50% of radioactivity is found in the control-can serve as a way to quantify whether the wash method increases the depth at which contamination penetrates into the material and thus the material becomes more difficult to decontaminate.


Assuntos
Materiais de Construção , Íons
2.
J Environ Chem Eng ; 7(3)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699771

RESUMO

To support the viability of a wash-down approach to mitigating nuclear contamination, this study presents a characterization of the aggregate of a common concrete by optical microscopy and the sorption-desorption characteristics of cesium from these into potential wash solutions. Various minerals with weathered surfaces displayed strong affinity for 137Cs with an effective partition coefficient Kd=120 mL/g for micas,>25-90 mL/g for feldspars, and>25-30 mL/g for amphiboles. The desorption Kd into 0.1M NH4Cl varied greatly but for amphiboles, sandstones, granite, and fine-grained quartzite it was>200 mL/g as a result of irreversible sorption. These same mineral phases are prevalent in all types of building materials, extending our conclusions more broadly to the problem of wide-area urban decontamination. In contrast, ionic solutions desorbed up to 98% of 137Cs from cement, suggesting that fresh concretes with an intact surface layer of cement could be more easily decontaminated if Cs+ interactions with the underlying minerals could be avoided. For practical applications common, non-hazardous chemicals such as sodium, potassium, and ammonium salts are as effective or more effective than harsher chemicals and expensive chelating agents. For example, when treated shortly after exposure, on time-scales commensurate with early response phase activities, 0.5M KCl could remove nearly 50% of bound 137Cs from concrete aggregate. Statistical analyses showed that desorption from the fine aggregate benefited from higher K+ and NH4 + concentrations. These results suggest that contamination in large areas of the urban environment can be dramatically reduced using common chemicals obtained readily from local stores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA