Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 83(10): 105110, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126807

RESUMO

Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb(3)Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a (7)Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm∕3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

2.
J Magn Reson ; 192(2): 329-37, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424127

RESUMO

We have commenced a project to develop a beyond-1 GHz solution NMR spectrometer using a HTS coil. Due to a small residual resistance present in the HTS conductor and joint resistance between conductors, a stable persistent current sufficient for NMR measurements is unlikely. Therefore, a current has to be supplied to the HTS coil from an external power supply. The ripple of an external power supply causes a field fluctuation which must be stabilized. In this study we show results of NMR measurements using a 500-600 MHz NMR in such an external current mode: the field fluctuations are stabilized by an internal 2H lock. The field fluctuation from the external power supply comprises a major field fluctuation component at low frequencies, 0.003-0.005 Hz, and superimposed minor field ripples at 2 Hz and 50 Hz. The former limits the time interval of the internal 2H lock, while the latter generates sidebands in the NMR spectrum. Sideband and baseline noise are controlled by appropriate selection of the feedback loop parameters of the lock. The quality of the 1D-solution NMR spectra observed in external current mode is equivalent to that obtained in persistent current mode. However, if the feedback loop time is as short as the gradient pulse width, refocusing of the NMR signal is lost and NMR peaks disappear. The 2D-NOESY and the 2D-HSQC spectra of ubiquitin in an external current mode have been acquired. The quality of the 2D spectra is equivalent to those obtained in persistent current mode; i.e. the internal 2H lock operates stably over an experimental time interval of 40-50 min. To realize a beyond-1 GHz NMR spectrometer, further investigations must be made of (i) the long term stability of a DC power supply, (ii) the enhancement of the compensation field limit for the internal 2H lock, (iii) the extension of the helium refill time interval, and (iv) a method to correct the field homogeneity in the external current mode.

3.
Carbohydr Res ; 340(7): 1343-50, 2005 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-15854604

RESUMO

1H NMR spectra of G1-alpha-CD and G1-beta-CD were recorded using a spectrometer equipped with a 21.6 T magnet. An ultra-high magnetic field was effective for detecting 1H NMR signals with a small difference in chemical shifts. Introducing a glucosyl group onto CDs as a branch caused deformation of equilibrated 1H signals of cyclodextrin. Particularly, 1H signals in branched glucose were shifted greatly.


Assuntos
Ciclodextrinas/química , Espectroscopia de Ressonância Magnética
4.
J Magn Reson ; 156(2): 318-21, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12165269

RESUMO

We have developed a 920-MHz NMR system and performed the proton NMR measurement of H(2)O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA