Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Scand J Immunol ; 99(5): e13358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605535

RESUMO

Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Quinases da Família src , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Jurkat , Ligação Proteica , Domínios de Homologia de src , Quinases da Família src/metabolismo , Tirosina/metabolismo
2.
J Immunol ; 207(4): 1128-1137, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321230

RESUMO

TCR signaling critically depends on the tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase). Two phosphotyrosines, the activating pTyr394 and the inhibitory pTyr505, control Lck activity. Recently, pTyr192 in the Lck SH2 domain emerged as a third regulator. How pTyr192 may affect Lck function remains unclear. In this study, we explored the role of Lck Tyr192 using CRISPR/Cas9-targeted knock-in mutations in the human Jurkat T cell line. Our data reveal that both Lck pTyr394 and pTyr505 are controlled by Lck Tyr192 Lck with a nonphosphorylated SH2 domain (Lck Phe192) displayed hyperactivity, possibly by promoting Lck Tyr394 transphosphorylation. Lck Glu192 mimicking stable Lck pTyr192 was inhibited by Tyr505 hyperphosphorylation. To overcome this effect, we further mutated Tyr505 The resulting Lck Glu192/Phe505 displayed strongly increased amounts of pTyr394 both in resting and activated T cells. Our results suggest that a fundamental role of Lck pTyr192 may be to protect Lck pTyr394 and/or pTyr505 to maintain a pool of already active Lck in resting T cells. This provides an additional mechanism for fine-tuning of Lck as well as T cell activity.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Transdução de Sinais , Linfócitos T/metabolismo , Domínios de Homologia de src
3.
Scand J Immunol ; 91(4): e12862, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31889332

RESUMO

CRISPR/Cas9 is a powerful gene-editing tool allowing for specific gene manipulation at targeted sites in the genome. Here, we used CRISPR/Cas9-mediated gene editing to introduce single amino acid mutations into proteins involved in T cell receptor signalling pathways. Knock-in mutations were introduced in Jurkat T cells by homologous directed repair using single-stranded oligodeoxynucleotides. Specifically, we aimed to create targeted mutations at two loci within LCK, a constitutively expressed gene, and at three loci within SH2D2A, whose expression is induced upon T cell activation. Here, we present a simple workflow that can be applied by any laboratory equipped for cell culture work, utilizing basic flow cytometry, Western blotting and PCR techniques. Our data reveal that gene editing may be locus-dependent and can vary between target sites, also within a gene. In our two targeted genes, on average 2% of the clones harboured homozygous mutations as assessed by allele-specific PCR and subsequent sequencing. We highlight the importance of decreasing the clonal heterogeneity and developing robust screening methods to accurately select for correct knock-in mutations. Our workflow may be employed in other immune cell lines and acts as a useful approach for decoding functional mechanisms of proteins of interest.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Linfócitos T , Fluxo de Trabalho , Humanos , Células Jurkat , Mutação
4.
J Biol Chem ; 294(42): 15480-15494, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31484725

RESUMO

T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Células HEK293 , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/genética , Proto-Oncogene Mas , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA