Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8103, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284831

RESUMO

Physical reservoir computing leverages the dynamical properties of complex physical systems to process information efficiently, significantly reducing training efforts and energy consumption. Magnetic skyrmions, topological spin textures, are promising candidates for reservoir computing systems due to their enhanced stability, non-linear interactions and low-power manipulation. Traditional spin-based reservoir computing has been limited to quasi-static detection or real-world data must be rescaled to the intrinsic timescale of the reservoir. We address this challenge by time-multiplexed skyrmion reservoir computing, that allows for aligning the reservoir's intrinsic timescales to real-world temporal patterns. Using millisecond-scale hand gestures recorded with Range-Doppler radar, we feed voltage excitations directly into our device and detect the skyrmion trajectory evolution. This method scales down to the nanometer level and demonstrates competitive or superior performance compared to energy-intensive software-based neural networks. Our hardware approach's key advantage is its ability to integrate sensor data in real-time without temporal rescaling, enabling numerous applications.

2.
Adv Mater ; 36(35): e2403685, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994679

RESUMO

The exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structures, offer an ideal platform for exploring exchange bias. However, effectively manipulating exchange bias in van der Waals heterostructures remains challenging. This study investigates the origin of exchange bias in MnPS3/Fe3GeTe2 van der Waals heterostructures, demonstrating a method to modulate nearly 1000% variation in magnitude through simple thermal cycling. Despite the compensated interfacial spin configuration of MnPS3, a substantial 170 mT exchange bias is observed at 5 K, one of the largest observed in van der Waals heterostructures. This significant exchange bias is linked to anomalous weak ferromagnetic ordering in MnPS3 below 40 K. The tunability of exchange bias during thermal cycling is attributed to the amorphization and changes in the van der Waals gap during field cooling. The findings highlight a robust and adjustable exchange bias in van der Waals heterostructures, presenting a straightforward method to enhance other interface-related spintronic phenomena for practical applications. Detailed interface analysis reveals atom migration between layers, forming amorphous regions on either side of the van der Waals gap, emphasizing the importance of precise interface characterization in these heterostructures.

3.
Nanomaterials (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921926

RESUMO

Femtosecond high-intensity laser pulses at intensities surpassing 1014 W/cm2 can generate a diverse range of functional surface nanostructures. Achieving precise control over the production of these functional structures necessitates a thorough understanding of the surface morphology dynamics with nanometer-scale spatial resolution and picosecond-scale temporal resolution. In this study, we show that single XFEL pulses can elucidate structural changes on surfaces induced by laser-generated plasmas using grazing-incidence small-angle X-ray scattering (GISAXS). Using aluminium-coated multilayer samples we distinguish between sub-picosecond (ps) surface morphology dynamics and subsequent multi-ps subsurface density dynamics with nanometer-depth sensitivity. The observed subsurface density dynamics serve to validate advanced simulation models representing matter under extreme conditions. Our findings promise to open new avenues for laser material-nanoprocessing and high-energy-density science.

4.
ACS Nano ; 18(11): 8383-8391, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437520

RESUMO

Two-dimensional van der Waals (vdW) heterostructures are an attractive platform for studying exchange bias due to their defect-free and atomically flat interfaces. Chromium thiophosphate (CrPS4), an antiferromagnetic material, possesses uncompensated magnetic spins in a single layer, rendering it a promising candidate for exploring exchange bias phenomena. Recent findings have highlighted that naturally oxidized vdW ferromagnetic Fe3GeTe2 exhibits exchange bias, attributed to the antiferromagnetic coupling of its ultrathin surface oxide layer (O-FGT) with the underlying unoxidized Fe3GeTe2. Anomalous Hall measurements are employed to scrutinize the exchange bias within the CrPS4/(O-FGT)/Fe3GeTe2 heterostructure. This analysis takes into account the contributions from both the perfectly uncompensated interfacial CrPS4 layer and the interfacial oxide layer. Intriguingly, a distinct and nonmonotonic exchange bias trend is observed as a function of temperature below 140 K. The occurrence of exchange bias induced by a "preset field" implies that the prevailing phase in the polycrystalline surface oxide is ferrimagnetic Fe3O4. Moreover, the exchange bias induced by the ferrimagnetic Fe3O4 is significantly modulated by the presence of the van der Waals antiferromagnetic CrPS4 layer, forming a heterostructure, along with additional iron oxide phases within the oxide layer. These findings underscore the intricate and complex nature of exchange bias in van der Waals heterostructures, highlighting their potential for tailored manipulation and control.

5.
J Am Chem Soc ; 146(11): 7480-7486, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446414

RESUMO

In this work, a novel π-extended thio[7]helicene scaffold was synthesized, where the α-position of the thiophene unit could be functionalized with bulky phenoxy radicals after considerable synthetic attempts. This open-shell helical diradical, ET7H-R, possesses high stability in the air, nontrivial π conjugation, persistent chirality, and a high diradical character (y0 of 0.998). The key feature is a predominant through-space spin-spin coupling (TSC) between two radicals at the helical terminals. Variable-temperature continuous-wave electron spin resonance (cw-ESR) and superconducting quantum interference device (SQUID) magnetometry in the solid state reveal a singlet ground state with a nearly degenerate triplet state of ET7H-R. These results highlight the significance of a stable helical diradicaloid as a promising platform for investigating intramolecular TSCs.

6.
Nat Commun ; 15(1): 2116, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459058

RESUMO

Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.

7.
Nat Commun ; 15(1): 1641, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409221

RESUMO

The ever-growing demand for device miniaturization and energy efficiency in data storage and computing technology has prompted a shift towards antiferromagnetic topological spin textures as information carriers. This shift is primarily owing to their negligible stray fields, leading to higher possible device density and potentially ultrafast dynamics. We realize in this work such chiral in-plane topological antiferromagnetic spin textures namely merons, antimerons, and bimerons in synthetic antiferromagnets by concurrently engineering the effective perpendicular magnetic anisotropy, the interlayer exchange coupling, and the magnetic compensation ratio. We demonstrate multimodal vector imaging of the three-dimensional Néel order parameter, revealing the topology of those spin textures and a globally well-defined chirality, which is a crucial requirement for controlled current-induced dynamics. Our analysis reveals that the interplay between interlayer exchange and interlayer magnetic dipolar interactions plays a key role to significantly reduce the critical strength of the Dzyaloshinskii-Moriya interaction required to stabilize topological spin textures, such as antiferromagnetic merons, in synthetic antiferromagnets, making them a promising platform for next-generation spintronics applications.

8.
Sci Adv ; 10(5): eadj4883, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295181

RESUMO

Altermagnets are an emerging elementary class of collinear magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of time-reversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic structure basis for a family of interesting phenomena and functionalities in fields ranging from topological matter to spintronics, which are based on the unconventional time-reversal symmetry breaking in altermagnets.

9.
Nano Lett ; 24(5): 1471-1476, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38216142

RESUMO

We study current-induced switching of the Néel vector in CoO/Pt bilayers to understand the underlying antiferromagnetic switching mechanism. Surprisingly, we find that for ultrathin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing these results to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the details of the reorientation of the Néel vector in ultrathin CoO(4 nm). This allows us to understand how opposite resistance changes can result from a thermomagnetoelastic switching mechanism. Importantly, our spatially resolved imaging shows that regions where the current pulses are applied and regions further away exhibit different switched spin structures, which can be explained by a spin-orbit torque-based switching mechanism that can dominate in very thin films.

10.
Nat Commun ; 14(1): 5424, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696785

RESUMO

Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.

11.
Opt Express ; 31(19): 30884-30893, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710621

RESUMO

Spintronic terahertz emitters promise terahertz sources with an unmatched broad frequency bandwidth that are easy to fabricate and operate, and therefore easy to scale at low cost. However, current experiments and proofs of concept rely on free-space ultrafast pump lasers and rather complex benchtop setups. This contrasts with the requirements of widespread industrial applications, where robust, compact, and safe designs are needed. To meet these requirements, we present a novel fiber-tip spintronic terahertz emitter solution that allows spintronic terahertz systems to be fully fiber-coupled. Using single-mode fiber waveguiding, the newly developed solution naturally leads to a simple and straightforward terahertz near-field imaging system with a 90%-10% knife-edge-response spatial resolution of 30 µm.

12.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578062

RESUMO

Chiral molecules have the potential for creating new magnetic devices by locally manipulating the magnetic properties of metallic surfaces. When chiral polypeptides chemisorb onto ferromagnets, they can induce magnetization locally by spin exchange interactions. However, direct imaging of surface magnetization changes induced by chiral molecules was not previously realized. Here, we use magneto-optical Kerr microscopy to image domains in thin films and show that chiral polypeptides strongly pin domains, increasing the coercive field locally. In our study, we also observe a rotation of the easy magnetic axis toward the out-of-plane, depending on the sample's domain size and the adsorption area. These findings show the potential of chiral molecules to control and manipulate magnetization and open new avenues for future research on the relationship between chirality and magnetization.

13.
Phys Rev Lett ; 131(4): 046701, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566862

RESUMO

We investigate magnetization dynamics of Mn_{2}Au/Py (Ni_{80}Fe_{20}) thin film bilayers using broadband ferromagnetic resonance (FMR) and Brillouin light scattering spectroscopy. Our bilayers exhibit two resonant modes with zero-field frequencies up to almost 40 GHz, far above the single-layer Py FMR. Our model calculations attribute these modes to the coupling of the Py FMR and the two antiferromagnetic resonance (AFMR) modes of Mn_{2}Au. The coupling strength is in the order of 1.6 T nm at room temperature for nm-thick Py. Our model reveals the dependence of the hybrid modes on the AFMR frequencies and interfacial coupling as well as the evanescent character of the spin waves that extend across the Mn_{2}Au/Py interface.

14.
Nano Lett ; 23(15): 7070-7075, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466639

RESUMO

The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI. Therefore, we investigate the influence of an electric current on a synthetic antiferromagnet with growth-induced IL-DMI. The IL-DMI is quantified by using out-of-plane hysteresis loops of the anomalous Hall effect while applying a static in-plane magnetic field at varied azimuthal angles. We observe a shift in the azimuthal dependence with an increasing current, which we conclude to originate from the additional in-plane symmetry breaking introduced by the current flow. Fitting the angular dependence, we demonstrate the presence of an additive current-induced term that linearly increases the IL-DMI in the direction of current flow. This opens the possibility of easily manipulating 3D spin textures by currents.

15.
Sci Adv ; 9(6): eade7439, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753538

RESUMO

Neuromorphic computing is expected to achieve human-brain performance by reproducing the structure of biological neural systems. However, previous neuromorphic designs based on synapse devices are all unsatisfying for their hardwired network structure and limited connection density, far from their biological counterpart, which has high connection density and the ability of meta-learning. Here, we propose a neural network based on magnon scattering modulated by an omnidirectional mobile hopfion in antiferromagnets. The states of neurons are encoded in the frequency distribution of magnons, and the connections between them are related to the frequency dependence of magnon scattering. Last, by controlling the hopfion's state, we can modulate hyperparameters in our network and realize the first meta-learning device that is verified to be well functioning. It not only breaks the connection density bottleneck but also provides a guideline for future designs of neuromorphic devices.

16.
Adv Mater ; 35(17): e2208922, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739114

RESUMO

Thermally induced skyrmion dynamics, as well as skyrmion pinning effects, in thin films have attracted significant interest. While pinning poses challenges in deterministic skyrmion devices and slows down skyrmion diffusion, for applications in non-conventional computing, both pinning of an appropriate strength and skyrmion diffusion speed are key. Here, periodic field excitations are employed to realize an increase of the skyrmion diffusion by more than two orders of magnitude. Amplifying the excitation, a drastic reduction of the effective skyrmion pinning, is reported, and a transition from pinning-dominated diffusive hopping to dynamics approaching free diffusion is observed. By tailoring the field oscillation frequency and amplitude, a continuous tuning of the effective pinning and skyrmion dynamics is demonstrated, which is a key asset and enabler for non-conventional computing applications. It is found that the periodic excitations additionally allow stabilization of skyrmions at different sizes for field values that are inaccessible in static systems, opening up new approaches to ultrafast skyrmion motion by transiently exciting moving skyrmions.

17.
ACS Nano ; 16(12): 20589-20597, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36410735

RESUMO

The absence of stray fields, their insensitivity to external magnetic fields, and ultrafast dynamics make antiferromagnets promising candidates for active elements in spintronic devices. Here, we demonstrate manipulation of the Néel vector in the metallic collinear antiferromagnet Mn2Au by combining strain and femtosecond laser excitation. Applying tensile strain along either of the two in-plane easy axes and locally exciting the sample by a train of femtosecond pulses, we align the Néel vector along the direction controlled by the applied strain. The dependence on the laser fluence and strain suggests the alignment is a result of optically triggered depinning of 90° domain walls and their motion in the direction of the free energy gradient, governed by the magneto-elastic coupling. The resulting, switchable state is stable at room temperature and insensitive to magnetic fields. Such an approach may provide ways to realize robust high-density memory device with switching time scales in the picosecond range.

18.
Nat Commun ; 13(1): 6982, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379941

RESUMO

Reservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated and thermal skyrmion motion, we find that already a single skyrmion in a confined geometry suffices to realize nonlinearly separable functions, which we demonstrate for the XOR gate along with all other Boolean logic gate operations. Besides this universality, the reservoir computing concept ensures low training costs and ultra-low power operation with current densities orders of magnitude smaller than those used in existing spintronic reservoir computing demonstrations. Our proposed concept is robust against device imperfections and can be readily extended by linking multiple confined geometries and/or by including more skyrmions in the reservoir, suggesting high potential for scalable and low-energy reservoir computing.

19.
Opt Express ; 30(12): 20451-20468, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224790

RESUMO

Metallic spintronic terahertz (THz) emitters have become well-established for offering ultra-broadband, gapless THz emission in a variety of excitation regimes, in combination with reliable fabrication and excellent scalability. However, so far, their potential for high-average-power excitation to reach strong THz fields at high repetition rates has not been thoroughly investigated. In this article, we explore the power scaling behavior of tri-layer spintronic emitters using an Yb-fiber excitation source, delivering an average power of 18.5 W (7 W incident on the emitter after chopping) at 400 kHz repetition rate, temporally compressed to a pulse duration of 27 fs. We confirm that a reflection geometry with back-side cooling is ideally suited for these emitters in the high-average-power excitation regime. In order to understand limiting mechanisms, we disentangle the effects on THz power generation by average power and pulse energy by varying the repetition rate of the laser. Our results show that the conversion efficiency is predominantly determined by the incident fluence in this high-average-power, high-repetition-rate excitation regime if the emitters are efficiently cooled. Using these findings, we optimize the conversion efficiency and reach highest excitation powers in the back-cooled reflection geometry. Our findings provide guidelines for scaling the power of THz radiation emitted by spintronic emitters to the milliwatt-level by using state-of-the-art femtosecond sources with multi-hundred-Watt average power to reach ultra-broadband, strong-field THz sources with high repetition rate.

20.
Nat Commun ; 13(1): 3144, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668143

RESUMO

A key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigations, for large skyrmions the pinning originates at the skyrmion boundary and not at its core. The boundary pinning is strongly influenced by the very complex pinning energy landscape that goes beyond the conventional effective rigid quasi-particle description. This gives rise to complex skyrmion shape distortions and allows for dynamic switching of pinning sites and flexible tuning of the pinning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA