Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(26): 47388-47403, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558668

RESUMO

The paper proposes a Wollaston-type crystal polarizer suitable for broadband operation within the visible spectral band up to the far infrared band based on unique optical materials, mercurous halides (Hg2X2). This paper introduces the general characteristics and optical properties of these birefringent tetragonal optical materials, as well as the general description of a Wollaston prism and the process of its parameter optimization. In general, the Wollaston polarizer is constructed from two combined wedge-shaped prisms. The key parameters that affect the properties of the Wollaston polarizer are then the cut angle of these two prisms and the refractive index of the exploited optical cement (immersion) that bonds the prisms together. The optimal prism cut angles and immersion refractive index are investigated to maximize the Wollaston parameters, such as the transmittance of the polarized radiation and the separation angle of the output orthogonally polarized beams. This process is significantly dependent on the characteristics of all selected mercurous halides (Hg2Cl2, Hg2Br2, Hg2I2). The optimal values of the prism cut angle for each material are selected based on the outlined results. In addition, the Wollaston prism behaviour regarding real radiation propagation is modelled in detail via the Zemax optical studio. The presented models aim to aid in the real design and fabrication of a broadband Wollaston polarizer based on mercurous halides.

2.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960945

RESUMO

Polypropylene is a typical representative of synthetic polymers that, for many applications including adhesive joints, requires an increase in wettability and chemical surface reactivity. Plasma processing offers efficient methods for such surface modifications. A particular disadvantage of the plasma jets can be the small plasma area. Here, we present a cold atmospheric plasma radio-frequency slit jet developed with a width of 150 mm applied to polypropylene plasma treatment in Ar, Ar/O2 and Ar/N2 We identified two main parameters influencing the tensile strength of adhesive joints mediated by epoxy adhesive DP 190, nitrogen content, and the amount of low molecular weight oxidized materials (LMWOMs). Nitrogen functional groups promoted adhesion between epoxy adhesive DP 190 and the PP by taking part in the curing process. LMWOMs formed a weak boundary layer, inhibiting adhesion by inducing a cohesive failure of the joint. A trade off between these two parameters determined the optimized conditions at which the strength of the adhesive joint increased 4.5 times. Higher adhesion strength was previously observed when using a translational plasma gliding arc plasma jet with higher plasma gas temperatures, resulting in better cross linking of polymer chains caused by local PP melting.

3.
Opt Express ; 29(8): 11833-11844, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984956

RESUMO

Current super-resolution structured illumination microscopes (SR-SIM) utilize relatively expensive electro-optic components and free-space optics, resulting in large setups. Moreover, high power laser sources are required to compensate for the losses associated with generating the illumination pattern by diffractive optics. Here, we present a highly compact and flexible 2D SR-SIM microscope based on all-fiber optic components (fiberSIM). Fiber-splitters deliver the laser light to the sample resulting in the interference illumination pattern. A microelectromechanical systems (MEMS) based fiber switch performs rapid pattern rotation. The pattern phase shift is achieved by the spatial displacement of one arm of the fiber interferometer using a piezoelectric crystal. Compared with existing methods, fiberSIM is highly compact and significantly reduces the SR-SIM component cost while achieving comparable results, thus providing a route to making SR-SIM technology accessible to even more laboratories in the life sciences.

4.
Opt Express ; 29(9): 12813-12832, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985030

RESUMO

The paper aims to show the advantages of the infrared-optimised quasi-collinear AOTF (acousto-optic tunable filter) for the spatio-spectral hyperspectral imaging system. The optimisation process is presented based on the selected tetragonal anisotropic materials with exceptional optical and acousto-optical properties in IR (infrared) spectral region. These materials are further compared in terms of their features and suitability for AOTF design. The spectral resolution is considered as the main optimising parameter. Resulting from the analysis, the mercurous chloride (Hg2Cl2) single crystal is selected as a representative of the mercurous halide family for the presentation of the quasi-collinear AOTF model operating in LWIR (long-wave infrared) spectral band. The overall parameters of the AOTF model such as spectral resolution, chromatic field of view, acoustic frequency, and operational power requirements are estimated and discussed in results.

5.
IEEE Trans Image Process ; 26(3): 1496-1508, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092541

RESUMO

Most of the effort in image quality assessment (QA) has been so far dedicated to the degradation of the image. However, there are also many algorithms in the image processing chain that can enhance the quality of an input image. These include procedures for contrast enhancement, deblurring, sharpening, up-sampling, denoising, transfer function compensation, etc. In this work, possible strategies for the quality assessment of sharpened images are investigated. This task is not trivial because the sharpening techniques can increase the perceived quality, as well as introduce artifacts leading to the quality drop (over-sharpening). Here, the framework specifically adapted for the quality assessment of sharpened images and objective metrics comparison in this context is introduced. However, the framework can be adopted in other quality assessment areas as well. The problem of selecting the correct procedure for subjective evaluation was addressed and a subjective test on blurred, sharpened, and over-sharpened images was performed in order to demonstrate the use of the framework. The obtained ground-truth data were used for testing the suitability of state-ofthe- art objective quality metrics for the assessment of sharpened images. The comparison was performed by novel procedure using ROC analyses which is found more appropriate for the task than standard methods. Furthermore, seven possible augmentations of the no-reference S3 metric adapted for sharpened images are proposed. The performance of the metric is significantly improved and also superior over the rest of the tested quality criteria with respect to the subjective data.

6.
Opt Express ; 23(16): 21509-26, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367997

RESUMO

This paper is devoted to the application of the optical Fourier transform (OFT) for the study and evaluation of optical scattering in the latest generation of calomel single crystals ready for application in several possible devices such as IR polarizers and acoustooptic tunable filters (AOTF). There are numerous effects that are responsible for the scattering of optical wave passing through the crystal sample volume and surface layers because they affect the optical crystal quality. The scattering level is a crucial and limiting parameter in many technical applications of the evaluated crystal. The proposed approach is based upon the high dynamic range optical FT configuration, creating the amplitude spectrum in the focal plane and its spatial angular distribution analysis based on the spectrum sectorization. The optical scattering pattern was tested in nine locations within each crystal sample volume and on numerous crystal samples. The experimental results are presented and discussed.

7.
Opt Express ; 22(24): 29805-17, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606910

RESUMO

We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluorescent samples of different thickness, labeling density and noise levels. The method provides good suppression of out of focus light, improves spatial resolution, and allows reconstruction of both 2D and 3D images of cells even in the case of weak signals. The method can be used to process both optical sectioning and super-resolution structured illumination microscopy data to create high quality super-resolution images.


Assuntos
Algoritmos , Imageamento Tridimensional , Iluminação , Microscopia/métodos , Probabilidade , Animais , Bovinos , Drosophila melanogaster/citologia , Fluorescência , Células Hep G2 , Humanos , Pólen/citologia , Razão Sinal-Ruído
8.
Opt Lett ; 35(21): 3565-7, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21042351

RESUMO

Direct amplitude and phase shaping of mid-infrared femtosecond pulses is realized with a calomel-based acousto-optic programmable dispersive filter transparent between 0.4 and 20 µm. The shaped pulse electric field is fully characterized with high accuracy, using chirped-pulse upconversion and time-encoded arrangement spectral phase interferometry for direct electric field reconstruction techniques. Complex mid-infrared pulse shapes at a center wavelength of 4.9 µm are generated with a spectral resolution of 14 cm(-1), which exceeds by a factor of 5 the reported experimental resolutions of calomel-based filters.


Assuntos
Acústica , Raios Infravermelhos , Compostos de Mercúrio , Dispositivos Ópticos , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA