Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
RSC Chem Biol ; 4(12): 1050-1063, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033732

RESUMO

Streptogramins are the last line of defense antimicrobials with pristinamycin as a representative substance used as therapeutics against highly resistant pathogenic bacteria. However, the emergence of (multi)drug-resistant pathogens renders these valuable antibiotics useless; making it necessary to derivatize compounds for new compound characteristics, which is often difficult by chemical de novo synthesis due to the complex nature of the molecules. An alternative to substance derivatization is mutasynthesis. Herein, we report about a mutasynthesis approach, targeting the phenylglycine (Phg) residue for substance derivatization, a pivotal component of streptogramin antibiotics. Mutasynthesis with halogenated Phg(-like) derivatives altogether led to the production of two new derivatized natural compounds, as there are 6-chloropristinamycin I and 6-fluoropristinamycin I based on LC-MS/MS analysis. 6-Chloropristinamycin I and 6-fluoropristinamycin I were isolated by preparative HPLC, structurally confirmed using NMR spectroscopy and tested for antimicrobial bioactivity. In a whole-cell biotransformation approach using an engineered E. coli BL21(DE3) pET28-hmo/pACYC-bcd-gdh strain, Phg derivatives were generated fermentatively. Supplementation with the E. coli biotransformation fermentation broth containing 4-fluorophenylglycine to the pristinamycin mutasynthesis strain resulted in the production of 6-fluoropristinamycin I, demonstrating an advanced level of mutasynthesis.

2.
J Med Chem ; 66(17): 11940-11950, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37595020

RESUMO

Cancer cells frequently utilize elevated nuclear export to escape tumor suppression and gain proliferative advantage. Chromosome Region Maintenance 1 (CRM1/XPO1) mediates macromolecule nuclear export and plays an important role in tumorigenesis and progression. The clinical approval of its covalent inhibitor KPT-330 (Selinexor) validates the feasibility of targeting CRM1 to treat cancers. Here, we synthesized four aminoratjadone derivatives and found that two of them, KL1 and KL2, are noncovalent CRM1 inhibitors. The two compounds underwent spontaneous hydrolysis in aqueous buffers, and the resulting products were more active against CRM1. High-resolution crystal structures revealed the CRM1-binding mode of these compounds and explained the observed structure-activity relationships. In cells, KL1 and KL2 localized CRM1 in the nuclear periphery and led to depletion of nuclear CRM1, thereby inhibiting the nuclear export and growth of colorectal cancer cells at submicromolar concentrations. This work lays the foundation for further development of aminoratjadone-based noncovalent CRM1 inhibitors.


Assuntos
Carcinogênese , Núcleo Celular , Humanos , Transformação Celular Neoplásica , Hidrazinas
3.
Org Biomol Chem ; 21(23): 4744-4749, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37067007

RESUMO

The 6,7-dihydroxycoumarin-5-carboxylates DHCou and 4-Me-DHCou have been synthesized via five-step route including a propargyl-Claisen rearrangement as key step. The compounds show antibiofilm activity against Stapylococcus aureus and Candida albicans but lack the cytotoxic activity of parent 6,7-dihydroxycoumarines such as esculetin and 4-methylesculetin.


Assuntos
Anti-Infecciosos , Antineoplásicos , Candida albicans , Staphylococcus aureus , Biofilmes , Testes de Sensibilidade Microbiana
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674437

RESUMO

The glucosinolate transporters 1/2/3 (GTR1/2/3) from the Nitrate and Peptide transporter Family (NPF) play an essential role in the transport, accumulation, and distribution of the specialized plant metabolite glucosinolates. Due to representing both antinutritional and health-promoting compounds, there is increasing interest in characterizing GTRs from various plant species. We generated seven artificial glucosinolates (either aliphatic or benzenic) bearing different fluorophores (Fluorescein, BODIPY, Rhodamine, Dansylamide, and NBD) and investigated the ability of GTR1/2/3 from Arabidopsis thaliana to import the fluorescent glucosinolates (F-GSLs) into oocytes from Xenopus laevis. Five out of the seven F-GSLs synthesized were imported by at least one of the GTRs. GTR1 and GTR2 were able to import three F-GSLs actively above external concentration, while GTR3 imported only one actively. Competition assays indicate that the F-GSLs are transported by the same mechanism as non-tagged natural glucosinolates. The GTR-mediated F-GSL uptake is detected via a rapid and sensitive assay only requiring simple fluorescence measurements on a standard plate reader. This is highly useful in investigations of glucosinolate transport function and provides a critical prerequisite for elucidating the relationship between structure and function through high-throughput screening of GTR mutant libraries. The F-GSL themselves may also be suitable for future studies on glucosinolate transport in vivo.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo
5.
Chemistry ; 29(5): e202202408, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36222466

RESUMO

Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.


Assuntos
Enterobactina , Escherichia coli , Relação Estrutura-Atividade , Escherichia coli/metabolismo , Nucleosídeos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Testes de Sensibilidade Microbiana
6.
Anal Chem ; 94(23): 8132-8135, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35653578

RESUMO

This report advises against the use of 5-iodoridine or 5-ethynyluridine as alternative assay reagents in the PUB module, primarily due to their lack of an isosbestic point of phosphorolysis under moderately alkaline conditions.


Assuntos
Fosfatos , Indicadores e Reagentes
7.
Chemistry ; 28(2): e202103525, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34713944

RESUMO

Masked trimethyl lock (TML) systems as molecular moieties enabling the bioresponsive release of compounds or dyes in a controlled temporal and spatial manner have been widely applied for the development of drug conjugates, prodrugs or molecular imaging tools. Herein, we report the development of a novel amino trimethyl lock (H2 N-TML) system as an auto-immolative molecular entity for the release of fluorophores. We designed Cou-TML-N3 and MURh-TML-N3 , two azide-masked turn-on fluorophores. The latter was demonstrated to selectively release fluorescent MURh in the presence of physiological concentrations of the redox-signaling molecule H2 S in vitro and was successfully applied to image H2 S in human cells.


Assuntos
Sulfeto de Hidrogênio , Pró-Fármacos , Corantes Fluorescentes , Humanos , Ionóforos , Imagem Molecular
8.
J Org Chem ; 86(21): 14903-14914, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34570972

RESUMO

The racemic total synthesis of nitrabirine (5) together with its previously undescribed epimer 2-epi nitrabirine (5') is accomplished via a six-step route based on a biomimetic late-stage heterocyclization. This allowed the assignment of the relative configuration of nitrabirine by the lanthanide-induced shifts (LIS) experiment, which was later on confirmed by X-ray diffraction of obtained single crystals. Furthermore, oxidation studies demonstrated that the direct N-oxidation of nitrabirine does not yield nitrabirine N-oxide as reported earlier. In contrast, the reaction of hydrogen peroxide with nitrabirine (5) yields the salt 24', whereas 2-epi nitrabirine (5') surprisingly leads to a previously uncharacterized product 22 under the same conditions. Finally, a Fischer indole reaction gave access to novel tetracyclic nitrabirine derivatives 26a-d. A comprehensive biological evaluation of nitrabirine (5), 2-epi nitrabirine (5'), and all derivatives synthesized in this study revealed general biofilm dispersal effects against Candida albicans. Moreover, specific compounds showed moderate antibacterial activities as well as potent cytotoxic activities.


Assuntos
Alcaloides , Biomimética , Alcaloides/farmacologia , Candida albicans , Compostos Orgânicos
9.
Chem Sci ; 12(30): 10179-10190, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34377407

RESUMO

The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.

10.
Antibiotics (Basel) ; 10(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072352

RESUMO

Infection-controlled release of antibacterial agents is of great importance, particularly for the control of peri-implant infections in the postoperative phase. Polymers containing antibiotics bound via enzymatically cleavable linkers could provide access to drug release systems that could accomplish this. Dispersions of nanogels were prepared by ionotropic gelation of alginate with poly-l-lysine, which was conjugated with ciprofloxacin as model drug via a copper-free 1,3-dipolar cycloaddition (click reaction). The nanogels are stable in dispersion and form films which are stable in aqueous environments. However, both the nanogels and the layers are degraded in the presence of an enzyme and the ciprofloxacin is released. The efficacy of the released drug against Staphylococcus aureus is negatively affected by the residues of the linker. Both the acyl modification of the amine nitrogen in ciprofloxacin and the sterically very demanding linker group with three annellated rings could be responsible for this. However the basic feasibility of the principle for enzyme-triggered release of drugs was successfully demonstrated.

11.
Antibiotics (Basel) ; 9(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498408

RESUMO

Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance. Extracts of Cannabis sativa have been used for the treatment of several diseasessince ancient times. However, its phytocannabinoid constituents are predominantly associated withpsychotropic effects and medical applications far beyond the treatment of infections. It has beendemonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositivebacteria including methicillin-resistant Staphylococcus aureus (MRSA). As first in vivoefficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promisingantimicrobial drug candidates or overhyped intoxicants with benefits.

12.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666384

RESUMO

To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.


Assuntos
Bacteriocinas/farmacologia , Microdomínios da Membrana/metabolismo , Viroses/metabolismo , Vírus/metabolismo , Aedes , Animais , Linhagem Celular , Microdomínios da Membrana/virologia , Fosfatidiletanolaminas/metabolismo , Viroses/tratamento farmacológico
13.
Chem Sci ; 10(20): 5197-5210, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31191875

RESUMO

The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed. The biological evaluation of ratjadones functionalized at the 16-position revealed that oxo- and amino-analogues had very high potencies against cancer cell lines (e.g. 16R-aminoratjadone 16 with IC50 = 260 pM against MCF-7 cells, or 19-oxoratjadone 14 with IC50 = 100 pM against A-549 cells). Mechanistically, the conjugates retained a nuclear export inhibitory activity through binding CRM1. To demonstrate a proof-of-principle for cellular targeting, folate- and luteinizing hormone releasing hormone (LHRH)-based carrier molecules were synthesized and coupled to aminoratjadones as well as fluorescein for cellular efficacy and imaging studies, respectively. The Trojan-Horse conjugates selectively addressed receptor-positive cell lines and were highly potent inhibitors of their proliferation. For example, the folate conjugate FA-7-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 34.3 nM, and the LHRH conjugate d-Orn-Gose-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 12.8 nM. The results demonstrate that nuclear export inhibition is a promising mode-of-action for extracellular-targeted drug conjugate payloads.

14.
Chembiochem ; 20(18): 2341-2345, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-30980446

RESUMO

The synthesis of the first example of a fluorescent glucosinolate (GSL)-BODIPY conjugate based on an azide-containing artificial GSL precursor (GSL-N3 ) is reported. Biochemical evaluation of the artificial GSLs revealed that the compounds are converted to the corresponding isothiocyanates in the presence of myrosinase. Furthermore, myrosinase-catalyzed hydrolysis in the presence of plant specifier proteins yielded the expected alternative products, namely nitriles. The easy assembly of the fluorescent GSL-BODIPY conjugate by click chemistry from GSL-N3 holds potential for application as a fluorescence labeling tool to investigate GSL-associated processes.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Glucosinolatos/química , Arabidopsis/química , Compostos de Boro/síntese química , Química Click , Corantes Fluorescentes/síntese química , Glucosinolatos/síntese química , Glicosídeo Hidrolases/química , Hidrólise , Isotiocianatos/química , Proteínas de Plantas/química , Sinapis/enzimologia
15.
Chembiochem ; 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29888433

RESUMO

Trimethyl lock (TML) systems are based on ortho-hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug-delivery systems, prodrug approaches, cell-imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.

16.
Curr Top Microbiol Immunol ; 398: 365-417, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27704270

RESUMO

The development of bacterial resistance against current antibiotic drugs necessitates a continuous renewal of the arsenal of efficacious drugs. This imperative has not been met by the output of antibiotic research and development of the past decades for various reasons, including the declining efforts of large pharma companies in this area. Moreover, the majority of novel antibiotics are chemical derivatives of existing structures that represent mostly step innovations, implying that the available chemical space may be exhausted. This review negates this impression by showcasing recent achievements in lead finding and optimization of antibiotics that have novel or unexplored chemical structures. Not surprisingly, many of the novel structural templates like teixobactins, lysocin, griselimycin, or the albicidin/cystobactamid pair were discovered from natural sources. Additional compounds were obtained from the screening of synthetic libraries and chemical synthesis, including the gyrase-inhibiting NTBI's and spiropyrimidinetrione, the tarocin and targocil inhibitors of wall teichoic acid synthesis, or the boronates and diazabicyclo[3.2.1]octane as novel ß-lactamase inhibitors. A motif that is common to most clinically validated antibiotics is that they address hotspots in complex biosynthetic machineries, whose functioning is essential for the bacterial cell. Therefore, an introduction to the biological targets-cell wall synthesis, topoisomerases, the DNA sliding clamp, and membrane-bound electron transport-is given for each of the leads presented here.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana , Animais , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Desenho de Fármacos , Humanos , Estrutura Molecular
17.
Curr Med Chem ; 23(15): 1549-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27048335

RESUMO

The isoprenoid stress-associated phytohormone abscisic acid (ABA) has recently been recognized to possess multifaceted biological functions in mammals and to exert potent curative effects in a number of clinically relevant human diseases. Studies with human specimens have unequivocally shown that ABA retains its stress-related functional attributes, previously identified in plants, which contribute to enhanced inflammatory defense mechanisms in mammals. Besides, studies performed in animal models revealed prominent anti-inflammatory properties of ABA as indicated by a marked reduction of immune cell infiltrates at the sites of inflammation. Thus, ABA treatment ultimately leads to the profound improvement of both non-communicable and communicable diseases which are associated with an overall alleviated course of inflammation. In addition to its action on the mammalian immune system, ABA was also shown to exert diverse physiological functions on non-immune components. One of the most remarkable features of ABA is to stimulate and expand mesenchymal stem cells, which may open a new avenue for its potential use in the field of regenerative medicine. Furthermore, ABA has been reported to play an important role in the maintenance of glycemic control. In this review, we summarize current understanding of the significance of ABA in the mammalian system, its prophylactic and therapeutic effects in various disease settings and the future directions for the development of ABA as novel drug candidate for the improved treatment of inflammatory and infectious human diseases.


Assuntos
Ácido Abscísico/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Doenças Transmissíveis/tratamento farmacológico , Inflamação/tratamento farmacológico , Ácido Abscísico/química , Animais , Anti-Inflamatórios não Esteroides/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos
18.
J Am Chem Soc ; 138(5): 1698-708, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26829208

RESUMO

A streamlined total synthesis of N(14)-desacetoxytubulysin H (Tb1) based on a C-H activation strategy and a short total synthesis of pretubulysin D (PTb-D43) are described. Applications of the developed synthetic strategies and technologies to the synthesis of a series of tubulysin analogues (Tb2-Tb41 and PTb-D42) are also reported. Biological evaluation of the synthesized compounds against an array of cancer cells revealed a number of novel analogues (e.g., Tb14), some with exceptional potencies against certain cell lines [e.g., Tb32 with IC50 = 12 pM against MES SA (uterine sarcoma) cell line and 2 pM against HEK 293T (human embryonic kidney) cell line], and a set of valuable structure-activity relationships. The highly potent cytotoxic compounds discovered in this study are highly desirable as payloads for antibody-drug conjugates and other drug delivery systems for personalized targeted cancer chemotherapies.


Assuntos
Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Oligopeptídeos/química , Relação Estrutura-Atividade
19.
Angew Chem Int Ed Engl ; 53(30): 7913-7, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24895221

RESUMO

Three simple methods for the synthesis of geminal triazides are described: Starting from 1) 3-oxocarboxylic acids, 2) iodomethyl ketones, or 3) terminal olefins, a range of triazidomethyl ketones can be constructed under mild oxidative reaction conditions by the use of IBX-SO3 K, a sulfonylated derivative of 2-iodoxybenzoic acid (IBX), and NaN3 as an azide source. This is the first report of representatives of this novel class of triazide compounds: Despite their high nitrogen content, the geminal triazides are easy to handle, even when preparative-scale syntheses are performed. (Caution: These procedures still require protective measures!) The triazides are now broadly available for further studies regarding their properties and reactivity. Furthermore, we show how the method can be used to provide α-azidoesters, which are potential building blocks for amino acids.


Assuntos
Azidas/química , Azidas/síntese química , Ésteres/química , Nitrogênio/química , Oxirredução
20.
Eur J Appl Physiol ; 114(2): 395-403, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24318788

RESUMO

PURPOSE: Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. METHODS: Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. RESULTS: No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p < 0.05) in both groups. Significant group by time interactions were found for the BESS score (p < 0.001). The intervention group showed greater improvements (69.3 ± 10.3%) after 10 weeks in comparison to controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. CONCLUSIONS: Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.


Assuntos
Hóquei/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural , Exercício de Aquecimento , Adolescente , Atletas , Estudos de Casos e Controles , Criança , Humanos , Masculino , Músculo Esquelético/inervação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA