Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 10(10): 9353-9360, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27726335

RESUMO

We investigate the electronic and magnetic properties of TbPc2 single ion magnets adsorbed on a graphene/Ni(111) substrate, by density functional theory (DFT), ab initio complete active space self-consistent field calculations, and X-ray magnetic circular dichroism (XMCD) experiments. Despite the presence of the graphene decoupling layer, a sizable antiferromagnetic coupling between Tb and Ni is observed in the XMCD experiments. The molecule-surface interaction is rationalized by the DFT analysis and is found to follow a relay-like communication pathway, where the radical spin on the organic Pc ligands mediates the interaction between Tb ion and Ni substrate spins. A model Hamiltonian which explicitly takes into account the presence of the spin radical is then developed, and the different magnetic interactions at play are assessed by first-principle calculations and by comparing the calculated magnetization curves with XMCD data. The relay-like mechanism is at the heart of the process through which the spin information contained in the Tb ion is sensed and exploited in carbon-based molecular spintronics devices.

2.
Dalton Trans ; 43(28): 10686-9, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24875369

RESUMO

With element-specific X-ray absorption spectroscopy and X-ray magnetic circular dichroism we have investigated submonolayer coverages of TbPc2 and DyPc2 molecules sublimated on highly ordered pyrolytic graphite. We have studied the field dependence of the magnetization of the central lanthanide ion at very low temperatures. Even in zero applied magnetic field we still observe a remanence in the magnetization. Since there are neither intermolecular coupling nor magnetic interactions with the substrate, this remanent behaviour results just from single-ion anisotropy. On the very inert surface of graphite at temperatures between 0.5 K and 2 K the spin relaxation is slow enough to observe a memory effect in the timescale of the experimental measurements.

3.
Chem Commun (Camb) ; 49(93): 10986-8, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24136154

RESUMO

Abrupt room temperature switching (T(c) = 295 K with a 5 K hysteresis) was achieved in a neutral Fe(II) complex based on a 2-(1H-pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine ligand. Structural characterization and spin crossover study (via SQUID magnetometry, photoexcitation and X-ray absorption spectroscopy) in the solid state are described.

4.
Beilstein J Nanotechnol ; 4: 320-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766956

RESUMO

The magnetic and electronic properties of single-molecule magnets are studied by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. We study the magnetic coupling of ultrathin Co and Ni films that are epitaxially grown onto a Cu(100) substrate, to an in situ deposited submonolayer of TbPc2 molecules. Because of the element specificity of the X-ray absorption spectroscopy we are able to individually determine the field dependence of the magnetization of the Tb ions and the Ni or Co film. On both substrates the TbPc2 molecules couple antiferromagnetically to the ferromagnetic films, which is possibly due to a superexchange interaction via the phthalocyanine ligand that contacts the magnetic surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA