Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurodegener ; 15(1): 39, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677995

RESUMO

Tau aggregation into amyloid fibers based on the cross-beta structure is a hallmark of several Tauopathies, including Alzheimer Disease (AD). Trans-cellular propagation of Tau with pathological conformation has been suggested as a key disease mechanism. This is thought to cause the spreading of Tau pathology in AD by templated conversion of naive Tau in recipient cells into a pathological state, followed by assembly of pathological Tau fibers, similar to the mechanism of nucleated polymerization proposed for prion pathogenesis. In cell cultures, the process is often monitored by a FRET assay where the recipient cell expresses the Tau repeat domain (TauRD) with a pro-aggregant mutation, fused to GFP-based FRET pairs. Since the size of the reporter GFP (barrel of ~ 3 nm × 4 nm) is ~ 7 times larger than the ß-strand distance (0.47 nm), this points to a potential steric clash. Hence, we investigated the influence of the GFP tag on TauFL or TauRD aggregation. Using biophysical methods (light scattering, atomic force microscopy (AFM), and scanning-transmission electron microscopy (STEM)), we found that the assembly of TauRD-GFP was severely inhibited and incompatible with that of Alzheimer filaments. These observations argue against the hypothesis that the propagation of Tau pathology in AD is caused by the prion-like templated aggregation of Tau protein, transmitted via cell-to-cell spreading of Tau. Thus, even though the observed local increase of FRET in recipient cells may be a valid hallmark of a pathological reaction, our data argue that it is caused by a process distinct from assembly of TauRD filaments.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Transferência Ressonante de Energia de Fluorescência , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Mutação/genética , Príons/genética , Príons/metabolismo
2.
J Clin Invest ; 128(9): 3906-3925, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29952767

RESUMO

Red blood cells (RBCs) influence rheology, and release ADP, ATP, and nitric oxide, suggesting a role for RBCs in hemostasis and thrombosis. Here, we provide evidence for a significant contribution of RBCs to thrombus formation. Anemic mice showed enhanced occlusion times upon injury of the carotid artery. A small population of RBCs was located to platelet thrombi and enhanced platelet activation by a direct cell contact via the FasL/FasR (CD95) pathway known to induce apoptosis. Activation of platelets in the presence of RBCs led to platelet FasL exposure that activated FasR on RBCs responsible for externalization of phosphatidylserine (PS) on the RBC membrane. Inhibition or genetic deletion of either FasL or FasR resulted in reduced PS exposure of RBCs and platelets, decreased thrombin generation, and reduced thrombus formation in vitro and protection against arterial thrombosis in vivo. Direct cell contacts between platelets and RBCs via FasL/FasR were shown after ligation of the inferior vena cava (IVC) and in surgical specimens of patients after thrombectomy. In a flow restriction model of the IVC, reduced thrombus formation was observed in FasL-/- mice. Taken together, our data reveal a significant contribution of RBCs to thrombosis by the FasL/FasR pathway.


Assuntos
Plaquetas/fisiologia , Eritrócitos/fisiologia , Proteína Ligante Fas/sangue , Trombose/sangue , Receptor fas/sangue , Idoso , Idoso de 80 Anos ou mais , Anemia/sangue , Animais , Plaquetas/ultraestrutura , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Eritrócitos/ultraestrutura , Proteína Ligante Fas/deficiência , Proteína Ligante Fas/genética , Feminino , Hemorreologia/fisiologia , Hemostasia/fisiologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Fosfatidilserinas/sangue , Ativação Plaquetária/fisiologia , Trombose/etiologia , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA