Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34290142

RESUMO

Many bacteria harbor RNA-dependent nucleoside-triphosphatases of the DEAH/RHA family, whose molecular mechanisms and cellular functions are poorly understood. Here, we show that the Escherichia coli DEAH/RHA protein, HrpA, is an ATP-dependent 3 to 5' RNA helicase and that the RNA helicase activity of HrpA influences bacterial survival under antibiotics treatment. Limited proteolysis, crystal structure analysis, and functional assays showed that HrpA contains an N-terminal DEAH/RHA helicase cassette preceded by a unique N-terminal domain and followed by a large C-terminal region that modulates the helicase activity. Structures of an expanded HrpA helicase cassette in the apo and RNA-bound states in combination with cross-linking/mass spectrometry revealed ratchet-like domain movements upon RNA engagement, much more pronounced than hitherto observed in related eukaryotic DEAH/RHA enzymes. Structure-based functional analyses delineated transient interdomain contact sites that support substrate loading and unwinding, suggesting that similar conformational changes support RNA translocation. Consistently, modeling studies showed that analogous dynamic intramolecular contacts are not possible in the related but helicase-inactive RNA-dependent nucleoside-triphosphatase, HrpB. Our results indicate that HrpA may be an interesting target to interfere with bacterial tolerance toward certain antibiotics and suggest possible interfering strategies.


Assuntos
Difosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , RNA Helicases DEAD-box/metabolismo , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Sítios de Ligação , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformação Proteica
2.
Structure ; 26(11): 1462-1473.e4, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30174149

RESUMO

Eukaryotic DExH-box proteins are important post-transcriptional gene regulators, many of which employ RNA-stimulated nucleoside triphosphatase activity to remodel RNAs or ribonucleoprotein complexes. However, bacterial DExH-box proteins are structurally and functionally poorly characterized. We report the crystal structure of the Escherichia coli DExH-box protein HrpB. A globular head is composed of dual RecA, winged-helix, helical bundle and oligonucleotide/oligosaccharide-binding domains, resembling a compact version of eukaryotic DExH-box proteins. Additionally, HrpB harbors a C-terminal region not found in proteins with known structure, which bestows the protein with unique interaction potential. Interaction and activity assays showed that the protein binds RNA but not DNA, hydrolyzes all nucleoside triphosphates in an RNA-stimulated manner, but does not unwind diverse model RNAs in vitro. These observations can be rationalized by detailed comparisons with structurally characterized eukaryotic DExH-box proteins. Comparative phenotypic analyses of an E. coli hrpB knockout mutant suggested diverse functions of HrpB homologs in different bacteria.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Oligossacarídeos/metabolismo , RNA Bacteriano/metabolismo , Sítios de Ligação , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Nucleosídeo-Trifosfatase/genética , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Especificidade por Substrato
3.
EMBO J ; 32(14): 2001-14, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23708798

RESUMO

C-di-GMP-which is produced by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases (PDEs)-is a ubiquitous second messenger in bacterial biofilm formation. In Escherichia coli, several DGCs (YegE, YdaM) and PDEs (YhjH, YciR) and the MerR-like transcription factor MlrA regulate the transcription of csgD, which encodes a biofilm regulator essential for producing amyloid curli fibres of the biofilm matrix. Here, we demonstrate that this system operates as a signalling cascade, in which c-di-GMP controlled by the DGC/PDE pair YegE/YhjH (module I) regulates the activity of the YdaM/YciR pair (module II). Via multiple direct interactions, the two module II proteins form a signalling complex with MlrA. YciR acts as a connector between modules I and II and functions as a trigger enzyme: its direct inhibition of the DGC YdaM is relieved when it binds and degrades c-di-GMP generated by module I. As a consequence, YdaM then generates c-di-GMP and-by direct and specific interaction-activates MlrA to stimulate csgD transcription. Trigger enzymes may represent a general principle in local c-di-GMP signalling.


Assuntos
GMP Cíclico/análogos & derivados , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/metabolismo , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sistemas do Segundo Mensageiro , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
4.
Sci Prog ; 90(Pt 2-3): 103-27, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17725229

RESUMO

The sigmaS (RpoS) subunit of RNA polymerase in Escherichia coli is a key master regulator which allows this bacterial model organism and important pathogen to adapt to and survive environmentally rough times. While hardly present in rapidly growing cells, sigmaS strongly accumulates in response to many different stress conditions, partly replaces the vegetative sigma subunit in RNA polymerase and thereby reprograms this enzyme to transcribe sigmaS-dependent genes (up to 10% of the E. coli genes). In this review, we summarize the extremely complex regulation of sigmaS itself and multiple signal input at the level of this master regulator, we describe the way in which sigmaS specifically recognizes "stress" promoters despite their similarity to vegetative promoters, and, while being far from comprehensive, we give a short overview of the far-reaching physiological impact of sigmaS. With sigmaS being a central and multiple signal integrator and master regulator of hundreds of genes organized in regulatory cascades and sub-networks or regulatory modules, this system also represents a key model system for analyzing complex cellular information processing and a starting point for understanding the complete regulatory network of an entire cell.


Assuntos
Proteínas de Bactérias/fisiologia , RNA Polimerases Dirigidas por DNA/fisiologia , Escherichia coli , Resposta ao Choque Térmico , Fator sigma/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/biossíntese , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/fisiologia , Genes Bacterianos , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Pressão Osmótica , Regiões Promotoras Genéticas , Fator sigma/biossíntese , Fator sigma/genética , Transdução de Sinais
5.
Microbiology (Reading) ; 153(Pt 8): 2560-2571, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660420

RESUMO

The cellular level of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is negatively controlled by chaperone-mediated proteolysis through the essential metalloprotease FtsH. Point mutations in the highly conserved region 2.1 stabilize RpoH in vivo. To assess the importance of this turnover element, hybrid proteins were constructed between E. coli RpoH and Bradyrhizobium japonicum RpoH1, a stable RpoH protein that differs from region 2.1 of E. coli RpoH at several positions. Nine amino acids forming a putative alpha-helix were exchanged between the two proteins. Both hybrids were active sigma factors and showed intermediate protein stability. Introduction of RpoH region 2.1 into the general stress sigma factor RpoS, which is a substrate of the ClpXP protease, did not render RpoS susceptible to FtsH. Hence, region 2.1 alone is not sufficient to confer FtsH sensitivity to other proteins. Region 2.1 is not a major chaperone-binding site since DnaK and DnaJ bound efficiently to all RpoH variants. The in vivo stability of the mutated RpoH proteins correlated with their stability in a purified in vitro degradation system, suggesting that region 2.1 might be directly involved in the interaction with the FtsH protease.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Escherichia coli/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator sigma/química , Fator sigma/genética
6.
EMBO J ; 22(16): 4111-20, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12912910

RESUMO

sigma(S) (RpoS), the master regulator of the general stress response in Escherichia coli, is a model system for regulated proteolysis in bacteria. sigma(S) turnover requires ClpXP and the response regulator RssB, whose phosphorylated form exhibits high affinity for sigma(S). Here, we demonstrate that recognition by the RssB/ClpXP system involves two distinct regions in sigma(S). Region 2.5 of sigma(S) (a long alpha-helix) is sufficient for binding of phosphorylated RssB. However, this interaction alone is not sufficient to trigger proteolysis. A second region located in the N-terminal part of sigma(S), which is exposed only upon RssB-sigma(S) interaction, serves as a binding site for the ClpX chaperone. Binding of the ClpX hexameric ring to sigma(S)-derived reporter proteins carrying the ClpX-binding site (but not the RssB-binding site) is also not sufficient to commit the protein to degradation. Our data indicate that RssB plays a second role in the initiation of sigma(S) proteolysis that goes beyond targeting of sigma(S) to ClpX, and suggest a model for the sequence of events in the initiation of sigma(S) proteolysis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Alanina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Ligação a DNA/isolamento & purificação , Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/química , Mutagênese Sítio-Dirigida , Fosforilação , Mutação Puntual , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Fator sigma/química , Fatores de Transcrição/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA