Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Environ Health Perspect ; 129(7): 77001, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34259569

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a major public health concern caused by complex genetic and environmental components. Mechanisms of gene-environment (G×E) interactions and reliable biomarkers associated with ASD are mostly unknown or controversial. Induced pluripotent stem cells (iPSCs) from patients or with clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9)-introduced mutations in candidate ASD genes provide an opportunity to study (G×E) interactions. OBJECTIVES: In this study, we aimed to identify a potential synergy between mutation in the high-risk autism gene encoding chromodomain helicase DNA binding protein 8 (CHD8) and environmental exposure to an organophosphate pesticide (chlorpyrifos; CPF) in an iPSC-derived human three-dimensional (3D) brain model. METHODS: This study employed human iPSC-derived 3D brain organoids (BrainSpheres) carrying a heterozygote CRISPR/Cas9-introduced inactivating mutation in CHD8 and exposed to CPF or its oxon-metabolite (CPO). Neural differentiation, viability, oxidative stress, and neurite outgrowth were assessed, and levels of main neurotransmitters and selected metabolites were validated against human data on ASD metabolic derangements. RESULTS: Expression of CHD8 protein was significantly lower in CHD8 heterozygous knockout (CHD8+/-) BrainSpheres compared with CHD8+/+ ones. Exposure to CPF/CPO treatment further reduced CHD8 protein levels, showing the potential (G×E) interaction synergy. A novel approach for validation of the model was chosen: from the literature, we identified a panel of metabolic biomarkers in patients and assessed them by targeted metabolomics in vitro. A synergistic effect was observed on the cholinergic system, S-adenosylmethionine, S-adenosylhomocysteine, lactic acid, tryptophan, kynurenic acid, and α-hydroxyglutaric acid levels. Neurite outgrowth was perturbed by CPF/CPO exposure. Heterozygous knockout of CHD8 in BrainSpheres led to an imbalance of excitatory/inhibitory neurotransmitters and lower levels of dopamine. DISCUSSION: This study pioneered (G×E) interaction in iPSC-derived organoids. The experimental strategy enables biomonitoring and environmental risk assessment for ASD. Our findings reflected some metabolic perturbations and disruption of neurotransmitter systems involved in ASD. The increased susceptibility of CHD8+/- BrainSpheres to chemical insult establishes a possibly broader role of (G×E) interaction in ASD. https://doi.org/10.1289/EHP8580.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Clorpirifos , Células-Tronco Pluripotentes Induzidas , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Transtorno Autístico/etiologia , Clorpirifos/toxicidade , Proteínas de Ligação a DNA/genética , Interação Gene-Ambiente , Humanos , Fatores de Transcrição
2.
Arch Toxicol ; 95(1): 207-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078273

RESUMO

Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.


Assuntos
Encéfalo/efeitos dos fármacos , Retardadores de Chama/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Organofosfatos/toxicidade , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Éteres Difenil Halogenados/toxicidade , Metaboloma/efeitos dos fármacos , Metabolômica , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Gravidez , Ratos Sprague-Dawley , Esferoides Celulares , Transcriptoma/efeitos dos fármacos , Tritolil Fosfatos/toxicidade
3.
Metabolomics ; 16(10): 113, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33044703

RESUMO

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) evolved from the recognized need for a community-wide consensus on improving and systematizing quality assurance (QA) and quality control (QC) practices for untargeted metabolomics. OBJECTIVES: In this work, we sought to identify and share the common and divergent QA and QC practices amongst mQACC members and collaborators who use liquid chromatography-mass spectrometry (LC-MS) in untargeted metabolomics. METHODS: All authors voluntarily participated in this collaborative research project by providing the details of and insights into the QA and QC practices used in their laboratories. This sharing was enabled via a six-page questionnaire composed of over 120 questions and comment fields which was developed as part of this work and has proved the basis for ongoing mQACC outreach. RESULTS: For QA, many laboratories reported documenting maintenance, calibration and tuning (82%); having established data storage and archival processes (71%); depositing data in public repositories (55%); having standard operating procedures (SOPs) in place for all laboratory processes (68%) and training staff on laboratory processes (55%). For QC, universal practices included using system suitability procedures (100%) and using a robust system of identification (Metabolomics Standards Initiative level 1 identification standards) for at least some of the detected compounds. Most laboratories used QC samples (>86%); used internal standards (91%); used a designated analytical acquisition template with randomized experimental samples (91%); and manually reviewed peak integration following data acquisition (86%). A minority of laboratories included technical replicates of experimental samples in their workflows (36%). CONCLUSIONS: Although the 23 contributors were researchers with diverse and international backgrounds from academia, industry and government, they are not necessarily representative of the worldwide pool of practitioners due to the recruitment method for participants and its voluntary nature. However, both questionnaire and the findings presented here have already informed and led other data gathering efforts by mQACC at conferences and other outreach activities and will continue to evolve in order to guide discussions for recommendations of best practices within the community and to establish internationally agreed upon reporting standards. We very much welcome further feedback from readers of this article.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Humanos , Laboratórios , Controle de Qualidade , Projetos de Pesquisa , Inquéritos e Questionários
4.
Sci Rep ; 10(1): 9718, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528098

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
ALTEX ; 37(2): 167-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32242634

RESUMO

Seven years after the last release, the European Commission has again collated and released data on laboratory animal use. The new report is the first to correspond to the requirements of the new Directive 2010/63/EU. Beside minor problems in reporting, the new reporting format is a major step forward, with additional new categories like severity allowing insight into animal use related questions that goes far beyond the previous reports. An in-depth analysis confirms a slight decrease in animal use from 2015 to 2017, but also compared to the 2005, 2008 and 2011 reports, though the new reporting scheme makes this comparison difficult. Notable success is evident for replacing rabbit pyrogen testing but, in general, the implementation of accepted alternative methods lags behind expec-tations. Beside the roughly 10 million animals per year covered in the report, about 8 million animals were identified that fall under the Directive but are not included in this number. Their omission downplays the impact of REACH on animal use. The report, second to none in its detail internationally, represents an important instrument for benchmarking and strategi-cally focusing activities in the 3Rs.


Assuntos
Alternativas aos Testes com Animais/estatística & dados numéricos , União Europeia , Ciência dos Animais de Laboratório/métodos , Ciência dos Animais de Laboratório/estatística & dados numéricos , Animais , Benchmarking , Interpretação Estatística de Dados
6.
Sci Rep ; 10(1): 4106, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139709

RESUMO

Cancer is a comparatively well-studied disease, yet despite decades of intense focus, we demonstrate here using data from The Cancer Genome Atlas that a substantial number of genes implicated in cancer are relatively poorly studied. Those genes will likely be missed by any data analysis pipeline, such as enrichment analysis, that depends exclusively on annotations for understanding biological function. There is no indication that the amount of research - indicated by number of publications - is correlated with any objective metric of gene significance. Moreover, these genes are not missing at random but reflect that our information about genes is gathered in a biased manner: poorly studied genes are more likely to be primate-specific and less likely to have a Mendelian inheritance pattern, and they tend to cluster in some biological processes and not others. While this likely reflects both technological limitations as well as the fact that well-known genes tend to gather more interest from the research community, in the absence of a concerted effort to study genes in an unbiased way, many genes (and biological processes) will remain opaque.


Assuntos
Neoplasias/genética , Bibliometria , Genes Neoplásicos , Estudos de Associação Genética , Genoma Humano , Humanos , Anotação de Sequência Molecular
7.
ALTEX ; 37(1): 3-23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31960937

RESUMO

Complementing the human genome with an exposome reflects the increasingly obvious impact of environmental exposure, which far exceeds the role of genetics, on human health. Considering the complexity of exposures and, in addition, the reactions of the body to exposures - i.e., the exposome - reverses classical exposure science where the precise measurement of single or few exposures is associated with specific health or environmental effects. The complete description of an individual's exposome is impossible; even less so is that of a population. We can, however, cast a wider net by foregoing some rigor in assessment and compensating with the statistical power of rich datasets. The advent of omics technologies enables a relatively cheap, high-content description of the biological effects of substances, especially in tissues and biofluids. They can be combined with many other rich data-streams, creating big data of exposure and effect. Computational methods increasingly allow data integration, discerning the signal from the noise and formulating hypotheses of exposure-effect relationships. These can be followed up in a targeted way. With a better exposure element in the risk equation, exposomics - new kid on the block of risk assessment - promises to identify novel exposure (interactions) and health/environment effect associations. This may also create opportunities to prioritize the more relevant chemicals for risk assessment, thereby lowering the burden on hazard assessment in an expo-sure-driven approach. Technological developments and synergies between approaches, quality assurance (ultimately as Good Exposome Practices), and the integration of mechanistic thinking will advance this approach.


Assuntos
Exposição Ambiental , Expossoma , Substâncias Perigosas/toxicidade , Alternativas ao Uso de Animais , Simulação por Computador , Saúde Ambiental , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Medição de Risco
8.
Cell Rep ; 27(2): 491-501.e6, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970252

RESUMO

N-acetyl-aspartyl-glutamate (NAAG) is a peptide-based neurotransmitter that has been extensively studied in many neurological diseases. In this study, we show a specific role of NAAG in cancer. We found that NAAG is more abundant in higher grade cancers and is a source of glutamate in cancers expressing glutamate carboxypeptidase II (GCPII), the enzyme that hydrolyzes NAAG to glutamate and N-acetyl-aspartate (NAA). Knocking down GCPII expression through genetic alteration or pharmacological inhibition of GCPII results in a reduction of both glutamate concentrations and cancer growth. Moreover, targeting GCPII in combination with glutaminase inhibition accentuates these effects. These findings suggest that NAAG serves as an important reservoir to provide glutamate to cancer cells through GCPII when glutamate production from other sources is limited. Thus, GCPII is a viable target for cancer therapy, either alone or in combination with glutaminase inhibition.


Assuntos
Ácido Glutâmico/metabolismo , Neoplasias/genética , Humanos
9.
Drug Discov Today ; 24(6): 1242-1247, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30953865

RESUMO

The Health Law, Policy & Ethics Project at Emory University School of Law and the Human Toxicology Project Consortium of the Humane Society of the United States co-sponsored a symposium on October 23, 2017, to showcase innovations using human-based in silico and in vitro models for drug and device discovery. The goal of the symposium was to introduce researchers and students to exciting new tools and possible future careers that will increase understanding of disease and improve the search for effective therapeutics, while reducing reliance on animal testing. The symposium concluded with a discussion between scientists and lawyers about the legal regulation of new biomedical research technologies.


Assuntos
Pesquisa Biomédica/legislação & jurisprudência , Pesquisadores/legislação & jurisprudência , Tecnologia Farmacêutica/legislação & jurisprudência , Animais , Humanos , Estados Unidos
10.
Front Genet ; 9: 508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483308

RESUMO

Despite Bisphenol-A (BPA) being subject to extensive study, a thorough understanding of molecular mechanism remains elusive. Here we show that using weighted gene correlation network analysis (WGCNA), which takes advantage of a graph theoretical approach to understanding correlations amongst genes and grouping genes into modules that typically have co-ordinated biological functions and regulatory mechanisms, that despite some commonality in altered genes, there is minimal overlap between BPA and estrogen in terms of network topology. We confirmed previous findings that ZNF217 and TFAP2C are involved in the estrogen pathway, and are implicated in BPA as well, although for BPA they appear to be active in the absence of canonical estrogen-receptor driven gene expression. Furthermore, our study suggested that PADI4 and RACK7/ZMYNDB8 may be involved in the overlap in gene expression between estradiol and BPA. Lastly, we demonstrated that even at low doses there are unique transcription factors that appear to be driving the biology of BPA, such as SREBF1. Overall, our data is consistent with other reports that BPA leads to subtle gene changes rather than profound aberrations of a conserved estrogen signaling (or other) pathways.

11.
Arch Toxicol ; 92(8): 2587-2606, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29955902

RESUMO

To date, most in vitro toxicity testing has focused on acute effects of compounds at high concentrations. This testing strategy does not reflect real-life exposures, which might contribute to long-term disease outcome. We used a 3D-human dopaminergic in vitro LUHMES cell line model to determine whether effects of short-term rotenone exposure (100 nM, 24 h) are permanent or reversible. A decrease in complex I activity, ATP, mitochondrial diameter, and neurite outgrowth were observed acutely. After compound removal, complex I activity was still inhibited; however, ATP levels were increased, cells were electrically active and aggregates restored neurite outgrowth integrity and mitochondrial morphology. We identified significant transcriptomic changes after 24 h which were not present 7 days after wash-out. Our results suggest that testing short-term exposures in vitro may capture many acute effects which cells can overcome, missing adaptive processes, and long-term mechanisms. In addition, to study cellular resilience, cells were re-exposed to rotenone after wash-out and recovery period. Pre-exposed cells maintained higher metabolic activity than controls and presented a different expression pattern in genes previously shown to be altered by rotenone. NEF2L2, ATF4, and EAAC1 were downregulated upon single hit on day 14, but unchanged in pre-exposed aggregates. DAT and CASP3 were only altered after re-exposure to rotenone, while TYMS and MLF1IP were downregulated in both single-exposed and pre-exposed aggregates. In summary, our study shows that a human cell-based 3D model can be used to assess cellular adaptation, resilience, and long-term mechanisms relevant to neurodegenerative research.


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios Dopaminérgicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Rotenona/toxicidade , Testes de Toxicidade/métodos , Trifosfato de Adenosina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Humanos , Inseticidas/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Crescimento Neuronal/efeitos dos fármacos
12.
Sci Rep ; 7(1): 8837, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821762

RESUMO

Many drugs have progressed through preclinical and clinical trials and have been available - for years in some cases - before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.


Assuntos
Dispositivos Lab-On-A-Chip , Análise Serial de Tecidos , Descoberta de Drogas/métodos , Desenho de Equipamento , Coração , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Microfluídica/instrumentação , Microfluídica/métodos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Análise Serial de Tecidos/instrumentação , Análise Serial de Tecidos/métodos
13.
Anal Chem ; 89(6): 3517-3523, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28221771

RESUMO

As mass spectrometry-based metabolomics becomes more widely used in biomedical research, it is important to revisit existing data analysis paradigms. Existing data preprocessing efforts have largely focused on methods which start by extracting features separately from each sample, followed by a subsequent attempt to group features across samples to facilitate comparisons. We show that this preprocessing approach leads to unnecessary variability in peak quantifications that adversely impacts downstream analysis. We present a new method, bakedpi, for the preprocessing of both centroid and profile mode metabolomics data that relies on an intensity-weighted bivariate kernel density estimation on a pooling of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in downstream differential analysis.


Assuntos
Androgênios/metabolismo , Hiperinsulinismo/metabolismo , Metabolômica , Resveratrol/metabolismo , Adolescente , Androgênios/sangue , Animais , Arabidopsis/química , Arabidopsis/metabolismo , Linhagem Celular , Feminino , Humanos , Hiperinsulinismo/sangue , Lactente , Fígado/química , Fígado/metabolismo , Células MCF-7 , Espectrometria de Massas , Camundongos , Folhas de Planta/química , Folhas de Planta/metabolismo , Resveratrol/análise
14.
Arch Toxicol ; 91(1): 217-230, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27039105

RESUMO

In the context of the Human Toxome project, mass spectroscopy-based metabolomics characterization of estrogen-stimulated MCF-7 cells was studied in order to support the untargeted deduction of pathways of toxicity. A targeted and untargeted approach using overrepresentation analysis (ORA), quantitative enrichment analysis (QEA) and pathway analysis (PA) and a metabolite network approach were compared. Any untargeted approach necessarily has some noise in the data owing to artifacts, outliers and misidentified metabolites. Depending on the chemical analytical choices (sample extraction, chromatography, instrument and settings, etc.), only a partial representation of all metabolites will be achieved, biased by both the analytical methods and the database used to identify the metabolites. Here, we show on the one hand that using a data analysis approach based exclusively on pathway annotations has the potential to miss much that is of interest and, in the case of misidentified metabolites, can produce perturbed pathways that are statistically significant yet uninformative for the biological sample at hand. On the other hand, a targeted approach, by narrowing its focus and minimizing (but not eliminating) misidentifications, renders the likelihood of a spurious pathway much smaller, but the limited number of metabolites also makes statistical significance harder to achieve. To avoid an analysis dependent on pathways, we built a de novo network using all metabolites that were different at 24 h with and without estrogen with a p value <0.01 (53) in the STITCH database, which links metabolites based on known reactions in the main metabolic network pathways but also based on experimental evidence and text mining. The resulting network contained a "connected component" of 43 metabolites and helped identify non-endogenous metabolites as well as pathways not visible by annotation-based approaches. Moreover, the most highly connected metabolites (energy metabolites such as pyruvate and alpha-ketoglutarate, as well as amino acids) showed only a modest change between proliferation with and without estrogen. Here, we demonstrate that estrogen has subtle but potentially phenotypically important alterations in the acyl-carnitine fatty acids, acetyl-putrescine and succinoadenosine, in addition to likely subtle changes in key energy metabolites that, however, could not be verified consistently given the technical limitations of this approach. Finally, we show that a network-based approach combined with text mining identifies pathways that would otherwise neither be considered statistically significant on their own nor be identified via ORA, QEA, or PA.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Modelos Biológicos , Metabolismo Secundário/efeitos dos fármacos , Toxicologia/métodos , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Mineração de Dados , Bases de Dados Factuais , Disruptores Endócrinos/farmacologia , Humanos , Células MCF-7 , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray
15.
ALTEX ; 34(2): 301-310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27846345

RESUMO

Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, "organotypic" cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.


Assuntos
Técnicas de Cultura de Células , Simulação por Computador , Biologia de Sistemas , Alternativas aos Testes com Animais , Animais , Técnicas de Cultura de Células/métodos , Substâncias Perigosas/toxicidade , Humanos , Dispositivos Lab-On-A-Chip , Medição de Risco
17.
Sci Rep ; 6: 28994, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456714

RESUMO

Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines.


Assuntos
Variação Genética/genética , Linhagem Celular Tumoral , Hibridização Genômica Comparativa/métodos , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos/genética , Humanos , Células MCF-7 , Repetições de Microssatélites/genética , Reprodutibilidade dos Testes
18.
Toxicol Res ; 32(1): 5-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26977253

RESUMO

Risk assessment is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. Mechanistic approaches to risk assessment have been generally referred to as systems toxicology. Systems toxicology makes use of advanced analytical and computational tools to integrate classical toxicology and quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Three presentations including two case studies involving both in vitro and in vivo approaches described the current state of systems toxicology and the potential for its future application in chemical risk assessment.

19.
ALTEX ; 33(2): 149-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863606

RESUMO

Grouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislations such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities. Despite a potentially broad user community, expertise is still concentrated across a handful of organizations and individuals. In order to facilitate the effective use of read-across, this document aims to summarize the state-of-the-art, summarizes insights learned from reviewing ECHA published decisions as far as the relative successes/pitfalls surrounding read-across under REACH and compile the relevant activities and guidance documents. Special emphasis is given to the available existing tools and approaches, an analysis of ECHA's published final decisions associated with all levels of compliance checks and testing proposals, the consideration and expression of uncertainty, the use of biological support data and the impact of the ECHA Read-Across Assessment Framework (RAAF) published in 2015.


Assuntos
Segurança Química/métodos , Substâncias Perigosas/toxicidade , Animais , Bases de Dados Factuais , Humanos , Medição de Risco/métodos , Gestão da Segurança/métodos , Toxicologia/métodos , Incerteza
20.
ALTEX ; 32(4): 319-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536290

RESUMO

Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.


Assuntos
Metabolômica/normas , Controle de Qualidade , Alternativas aos Testes com Animais/normas , Animais , Metabolômica/métodos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA