Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 112(11): 1725-1727, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843777

RESUMO

In this issue of Neuron, Li, Zhang, et al.1 find that the bile acid receptor TGR5 in the lateral hypothalamus influences neuronal dynamics underlying stress-induced depression-like behaviors. Inhibition of these neurons produces antidepressant-like effects through a circuit that includes hippocampal CA3 and dorsolateral septum, revealing a novel potential therapeutic for depression.


Assuntos
Ácidos e Sais Biliares , Receptores Acoplados a Proteínas G , Animais , Ácidos e Sais Biliares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Depressão/metabolismo
2.
Annu Rev Neurosci ; 46: 211-231, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36917821

RESUMO

Emotions are fundamental to our experience and behavior, affecting and motivating all aspects of our lives. Scientists of various disciplines have been fascinated by emotions for centuries, yet even today vigorous debates abound about how to define emotions and how to best study their neural underpinnings. Defining emotions from an evolutionary perspective and acknowledging their important functional roles in supporting survival allows the study of emotion states in diverse species. This approach enables taking advantage of modern tools in behavioral, systems, and circuit neurosciences, allowing the precise dissection of neural mechanisms and behavior underlying emotion processes in model organisms. Here we review findings about the neural circuit mechanisms underlying emotion processing across species and try to identify points of convergence as well as important next steps in the pursuit of understanding how emotions emerge from neural activity.


Assuntos
Emoções , Neurociências , Evolução Biológica , Encéfalo
3.
Science ; 374(6570): 1010-1015, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793231

RESUMO

How does the brain maintain fear within an adaptive range? We found that the insular cortex acts as a state-dependent regulator of fear that is necessary to establish an equilibrium between the extinction and maintenance of fear memories in mice. Whereas insular cortex responsiveness to fear-evoking cues increased with their certainty to predict harm, this activity was attenuated through negative bodily feedback that arose from heart rate decelerations during freezing. Perturbation of body-brain communication by vagus nerve stimulation disrupted the balance between fear extinction and maintenance similar to insular cortex inhibition. Our data reveal that the insular cortex integrates predictive sensory and interoceptive signals to provide graded and bidirectional teaching signals that gate fear extinction and illustrate how bodily feedback signals are used to maintain fear within a functional equilibrium.


Assuntos
Medo , Retroalimentação Fisiológica , Córtex Insular/fisiologia , Animais , Condicionamento Clássico , Sinais (Psicologia) , Extinção Psicológica , Frequência Cardíaca , Interocepção , Masculino , Rememoração Mental , Camundongos , Camundongos Endogâmicos C57BL , Nervo Vago/fisiologia
4.
Science ; 371(6525): 122-123, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33414207
5.
Elife ; 92020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32940600

RESUMO

The insular cortex (IC) plays key roles in emotional and regulatory brain functions and is affected across psychiatric diseases. However, the brain-wide connections of the mouse IC have not been comprehensively mapped. Here, we traced the whole-brain inputs and outputs of the mouse IC across its rostro-caudal extent. We employed cell-type-specific monosynaptic rabies virus tracings to characterize afferent connections onto either excitatory or inhibitory IC neurons, and adeno-associated viral tracings to label excitatory efferent axons. While the connectivity between the IC and other cortical regions was highly bidirectional, the IC connectivity with subcortical structures was often unidirectional, revealing prominent cortical-to-subcortical or subcortical-to-cortical pathways. The posterior and medial IC exhibited resembling connectivity patterns, while the anterior IC connectivity was distinct, suggesting two major functional compartments. Our results provide insights into the anatomical architecture of the mouse IC and thus a structural basis to guide investigations into its complex functions.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Camundongos/anatomia & histologia , Neurônios/citologia , Animais , Feminino , Masculino
6.
Science ; 368(6486): 89-94, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241948

RESUMO

Understanding the neurobiological underpinnings of emotion relies on objective readouts of the emotional state of an individual, which remains a major challenge especially in animal models. We found that mice exhibit stereotyped facial expressions in response to emotionally salient events, as well as upon targeted manipulations in emotion-relevant neuronal circuits. Facial expressions were classified into distinct categories using machine learning and reflected the changing intrinsic value of the same sensory stimulus encountered under different homeostatic or affective conditions. Facial expressions revealed emotion features such as intensity, valence, and persistence. Two-photon imaging uncovered insular cortical neuron activity that correlated with specific facial expressions and may encode distinct emotions. Facial expressions thus provide a means to infer emotion states and their neuronal correlates in mice.


Assuntos
Córtex Cerebral/fisiologia , Emoções/fisiologia , Expressão Facial , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Córtex Cerebral/citologia , Masculino , Camundongos
7.
Nat Neurosci ; 22(9): 1424-1437, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31455886

RESUMO

Triggering behavioral adaptation upon the detection of adversity is crucial for survival. The insular cortex has been suggested to process emotions and homeostatic signals, but how the insular cortex detects internal states and mediates behavioral adaptation is poorly understood. By combining data from fiber photometry, optogenetics, awake two-photon calcium imaging and comprehensive whole-brain viral tracings, we here uncover a role for the posterior insula in processing aversive sensory stimuli and emotional and bodily states, as well as in exerting prominent top-down modulation of ongoing behaviors in mice. By employing projection-specific optogenetics, we describe an insula-to-central amygdala pathway to mediate anxiety-related behaviors, while an independent nucleus accumbens-projecting pathway regulates feeding upon changes in bodily state. Together, our data support a model in which the posterior insular cortex can shift behavioral strategies upon the detection of aversive internal states, providing a new entry point to understand how alterations in insula circuitry may contribute to neuropsychiatric conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Front Syst Neurosci ; 10: 83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833535

RESUMO

The entorhinal cortices in the temporal lobe of the brain are key structures relaying memory related information between the neocortex and the hippocampus. The medial entorhinal cortex (MEC) routes spatial information, whereas the lateral entorhinal cortex (LEC) routes predominantly olfactory information to the hippocampus. Gamma oscillations are known to coordinate information transfer between brain regions by precisely timing population activity of neuronal ensembles. Here, we studied the organization of in vitro gamma oscillations in the MEC and LEC of the transgenic (tg) amyloid precursor protein (APP)-presenilin 1 (PS1) mouse model of Alzheimer's Disease (AD) at 4-5 months of age. In vitro gamma oscillations using the kainate model peaked between 30-50 Hz and therefore we analyzed the oscillatory properties in the 20-60 Hz range. Our results indicate that the LEC shows clear alterations in frequency and power of gamma oscillations at an early stage of AD as compared to the MEC. The gamma-frequency oscillation slows down in the LEC and also the gamma power in dorsal LEC is decreased as early as 4-5 months in the tg APP-PS1 mice. The results of this study suggest that the timing of olfactory inputs from LEC to the hippocampus might be affected at an early stage of AD, resulting in a possible erroneous integration of the information carried by the two input pathways to the hippocampal subfields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA