Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204410

RESUMO

Fibres in the micro- and nanometre scale are suited to a broad range of applications, including drug delivery and tissue engineering. Electrospinning is the manufacturing method of choice, but it has some limitations. Novel pressure-driven fibre-forming techniques, like pressurised gyration (PG), overcome these limitations; however, the compatibility of PG with biological materials has not yet been evaluated in detail. For the first time, this limitation of PG was investigated by optimising PG for microbial cell processing and incorporating bacterial cultures into fibrous polymeric scaffolds for sustained release. Multiple polymer-solvent systems were trialled, including polyvinylpyrrolidone (PVP)/phosphate-buffered saline (PBS) 25% w/v, polyethylene oxide (PEO)/PBS 20% w/v, and PVP/ethanol 20% w/v. Rheological studies revealed the surface tension of the PVP/PBS, PEO/PBS, and PVP/ethanol polymer-solvent systems to be 73.2, 73.9, and 22.6 mN/m, respectively. Scanning electron microscopy showed the median fibre diameters to be between 9.8 µm and 26.1 µm, with PVP producing larger fibres. Overnight Bacillus subtilis cultures were then incorporated into the chosen polymeric solutions and processed into fibres using PG. The produced cell-loaded fibres were incubated in LB broth to assess the cell viability of the encapsulated cells. Colony counts post-incubation showed the PVP/PBS 25% fibres resulted in 60% bacterial growth, and PEO/PBS 20% fibres led to 47% bacterial growth, whereas PVP/ethanol 20% fibres did not lead to any bacterial growth. Based on the results gathered during this study, it can be concluded that PG offers a promising way of encapsulating cells and other sensitive biological products while having many notable advantages compared to electrospinning. This research demonstrates proof of concept research-based evidence and showcases the potential of pressurised gyration as a key disruptive innovation in probiotic delivery system design and manufacturing.

2.
Front Vet Sci ; 8: 748869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746286

RESUMO

This report provides the first clinical, radiographic, echocardiographic, and biological description of SARS-CoV-2-associated myocarditis with a 6-month follow-up in a 5-year-old obese male domestic shorthair cat (Cat-1) presented for refractory congestive heart failure, with high cardiac troponin-I level (5.24 ng/ml), and a large lingual ulcer. The animal was SARS-CoV-2 positive on serology. The other cat living in the same household (Cat-2) never showed any clinical sign but was also confirmed SARS-CoV-2 positive on serology. Both cats were SARS-CoV-2 PCR negative. Cat-1 had closer contact than Cat-2 with their owner, who had been in close contact with a coworker tested PCR positive for COVID-19 (Alpha (B.1.1.7) variant) 4 weeks before Cat-1's first episode of congestive heart failure. A focused point-of-care echocardiography at presentation revealed for Cat-1 numerous B-lines, pleural effusion, severe left atrial dilation and dysfunction, and hypertrophic cardiomyopathy phenotype associated with focal pulmonary consolidations. Both myocarditis and pneumonia were suspected, leading to the prescription of cardiac medications and antibiotics. One month later, Cat-1 recovered, with normalization of left atrial size and function, and radiographic and echocardiography disappearance of heart failure signs and pulmonary lesions. An extensive literature review of SARS-CoV-2-related cardiac injury in pets in comparison with human pathology is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA