Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373209

RESUMO

Diet-induced models of chronic kidney disease (CKD) offer several advantages, including clinical relevance and animal welfare, compared with surgical models. Oxalate is a plant-based, terminal toxic metabolite that is eliminated by the kidneys through glomerular filtration and tubular secretion. An increased load of dietary oxalate leads to supersaturation, calcium oxalate crystal formation, renal tubular obstruction, and eventually CKD. Dahl-Salt-Sensitive (SS) rats are a common strain used to study hypertensive renal disease; however, the characterization of other diet-induced models on this background would allow for comparative studies of CKD within the same strain. In the present study, we hypothesized that SS rats on a low-salt, oxalate rich diet would have increased renal injury and serve as novel, clinically relevant and reproducible CKD rat models. Ten-week-old male SS rats were fed either 0.2% salt normal chow (SS-NC) or a 0.2% salt diet containing 0.67% sodium oxalate (SS-OX) for five weeks.Real-time PCR demonstrated an increased expression of inflammatory marker interleukin-6 (IL-6) (p < 0.0001) and fibrotic marker Timp-1 metalloproteinase (p < 0.0001) in the renal cortex of SS-OX rat kidneys compared with SS-NC. The immunohistochemistry of kidney tissue demonstrated an increase in CD-68 levels, a marker of macrophage infiltration in SS-OX rats (p < 0.001). In addition, SS-OX rats displayed increased 24 h urinary protein excretion (UPE) (p < 0.01) as well as significant elevations in plasma Cystatin C (p < 0.01). Furthermore, the oxalate diet induced hypertension (p < 0.05). A renin-angiotensin-aldosterone system (RAAS) profiling (via liquid chromatography-mass spectrometry; LC-MS) in the SS-OX plasma showed significant (p < 0.05) increases in multiple RAAS metabolites including angiotensin (1-5), angiotensin (1-7), and aldosterone. The oxalate diet induces significant renal inflammation, fibrosis, and renal dysfunction as well as RAAS activation and hypertension in SS rats compared with a normal chow diet. This study introduces a novel diet-induced model to study hypertension and CKD that is more clinically translatable and reproducible than the currently available models.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Ratos Endogâmicos Dahl , Oxalatos/metabolismo , Rim/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Insuficiência Renal Crônica/metabolismo , Dieta/efeitos adversos , Pressão Sanguínea
2.
Biomedicines ; 10(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140402

RESUMO

Paraoxonase-1 (PON-1) is a hydrolytic enzyme associated with HDL, contributing to its anti-inflammatory, antioxidant, and anti-atherogenic properties. Deficiencies in PON-1 activity result in oxidative stress and detrimental clinical outcomes in the context of chronic kidney disease (CKD). However, it is unclear if a decrease in PON-1 activity is mechanistically linked to adverse cardiovascular events in CKD. We investigated the hypothesis that PON-1 is cardioprotective in a Dahl salt-sensitive model of hypertensive renal disease. Experiments were performed on control Dahl salt-sensitive rats (SSMcwi, hereafter designated SS-WT rats) and mutant PON-1 rats (SS-Pon1em1Mcwi, hereafter designated SS-PON-1 KO rats) generated using CRISPR gene editing technology. Age-matched 10-week-old SS and SS-PON-1 KO male rats were maintained on high-salt diets (8% NaCl) for five weeks to induce hypertensive renal disease. Echocardiography showed that SS-PON-1 KO rats but not SS-WT rats developed compensated left ventricular hypertrophy after only 4 weeks on the high-salt diet. RT-PCR analysis demonstrated a significant increase in the expression of genes linked to cardiac hypertrophy, inflammation, and fibrosis, as well as a significant decrease in genes essential to left ventricular function in SS-PON-1 KO rats compared to SS-WT rats. A histological examination also revealed a significant increase in cardiac fibrosis and immune cell infiltration in SS-PON-1 KO rats, consistent with their cardiac hypertrophy phenotype. Our data suggest that a loss of PON-1 in the salt-sensitive hypertensive model of CKD leads to increased cardiac inflammation and fibrosis as well as a molecular and functional cardiac phenotype consistent with compensated left ventricular hypertrophy.

3.
Environ Int ; 169: 107531, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36137425

RESUMO

Harmful algal blooms plague bodies of freshwater globally. These blooms are often composed of outgrowths of cyanobacteria capable of producing the heptapeptide Microcystin-LR (MC-LR) which is a well-known hepatotoxin. Recently, MC-LR has been detected in aerosols generated from lake water. However, the risk for human health effects due to MC-LR inhalation exposure have not been extensively investigated. In this study, we exposed a fully differentiated 3D human airway epithelium derived from 14 healthy donors to MC-LR-containing aerosol once a day for 3 days. Concentrations of MC-LR ranged from 100 pM to 1 µM. Although there were little to no detrimental alterations in measures of the airway epithelial function (i.e. cell survival, tissue integrity, mucociliary clearance, or cilia beating frequency), a distinct shift in the transcriptional activity was found. Genes related to inflammation were found to be upregulated such as C-C motif chemokine 5 (CCL5; log2FC = 0.57, p = 0.03) and C-C chemokine receptor type 7 (CCR7; log2FC = 0.84, p = 0.03). Functionally, conditioned media from MC-LR exposed airway epithelium was also found to have significant chemo-attractive properties for primary human neutrophils. Additionally, increases were found in the concentration of secreted chemokine proteins in the conditioned media such as CCL1 (log2FC = 5.07, p = 0.0001) and CCL5 (log2FC = 1.02, p = 0.046). These results suggest that MC-LR exposure to the human airway epithelium is capable of inducing an inflammatory response that may potentiate acute or chronic disease.


Assuntos
Microcistinas , Água , Aerossóis/toxicidade , Meios de Cultivo Condicionados , Epitélio , Humanos , Toxinas Marinhas , Microcistinas/toxicidade , Receptores CCR7
4.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36009344

RESUMO

We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.

5.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35624764

RESUMO

Papraoxonase-1 (PON1) is a hydrolytic lactonase enzyme that is synthesized in the liver and circulates attached to high-density lipoproteins (HDL). Clinical studies have demonstrated an association between diminished PON-1 and the progression of chronic kidney disease (CKD). However, whether decreased PON-1 is mechanistically linked to renal injury is unknown. We tested the hypothesis that the absence of PON-1 is mechanistically linked to the progression of renal inflammation and injury in CKD. Experiments were performed on control Dahl salt-sensitive rats (SSMcwi, hereafter designated SS rats) and Pon1 knock-out rats (designated SS-Pon1em1Mcwi, hereafter designated SS-PON-1 KO rats) generated by injecting a CRISPR targeting the sequence into SSMcwi rat embryos. The resulting mutation is a 7 bp frameshift insertion in exon 4 of the PON-1 gene. First, to examine the renal protective role of PON-1 in settings of CKD, ten-week-old, age-matched male rats were maintained on a high-salt diet (8% NaCl) for up to 5 weeks to initiate the salt-sensitive hypertensive renal disease characteristic of this model. We found that SS-PON-1 KO rats demonstrated several hallmarks of increased renal injury vs. SS rats including increased renal fibrosis, sclerosis, and tubular injury. SS-PON-1 KO also demonstrated increased recruitment of immune cells in the renal interstitium, as well as increased expression of inflammatory genes compared to SS rats (all p < 0.05). SS-PON-1 KO rats also showed a significant (p < 0.05) decline in renal function and increased renal oxidative stress compared to SS rats, despite no differences in blood pressure between the two groups. These findings suggest a new role for PON-1 in regulating renal inflammation and fibrosis in the setting of chronic renal disease independent of blood pressure.

6.
Life (Basel) ; 12(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35330169

RESUMO

Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin-collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.

7.
Chemosphere ; 257: 127111, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32485513

RESUMO

Microcystin-leucine arginine (MC-LR) is a potent liver toxin produced by freshwater cyanobacteria, also known as blue-green algae. While harmful algal blooms are increasing in frequency and severity worldwide, there is still no established method for the diagnosis and assessment of MC-LR induced liver damage. The guidelines for MC-LR safe exposure limits have been previously established based on healthy animal studies, however we have previously demonstrated that pre-existing non-alcoholic fatty liver disease (NAFLD) increases susceptiblity to the hepatotoxic effects of MC-LR. In this study, we sought to investigate the suitability of clinically used biomarkers of liver injury, specifically alanine aminotransferase (ALT) and alkaline phosphatase (ALP), as potential diagnostic tools for liver damage induced by chronic low dose administration of MC-LR in the setting of pre-existing NAFLD. In our Leprdb/J mouse model of NAFLD, we found that while MC-LR induced significant histopathologic damage in the setting of NAFLD, gene expression of ALT and ALP failed to increase with MC-LR exposure. Serum ALT and ALP also failed to increase with MC-LR exposure, except for a moderate increase in ALP with the highest dose of MC-LR used (100 µg/kg). In HepG2 human liver epithelial cells, we observed that increasing MC-LR exposure levels do not lead to an increase in ALT or ALP gene expression, intracellular enzyme activity, or extracellular activity, despite a significant increase in MC-LR induced cytotoxicity. These findings demonstrate that ALT and ALP may be unsuitable as diagnostic biomarkers for MC-LR induced liver damage.


Assuntos
Fígado/metabolismo , Microcistinas/toxicidade , Alanina Transaminase/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cianobactérias , Expressão Gênica , Proliferação Nociva de Algas , Humanos , Toxinas Marinhas , Camundongos , Hepatopatia Gordurosa não Alcoólica
8.
Biomedicines ; 8(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498446

RESUMO

Inflammatory Bowel Disease (IBD) is one of the most common gastrointestinal (GI) disorders around the world, and includes diagnoses such as Crohn's disease and ulcerative colitis. The etiology of IBD is influenced by genetic and environmental factors. One environmental perturbagen that is not well studied within the intestines is microcystin-leucine arginine (MC-LR), which is a toxin produced by cyanobacteria in freshwater environments around the world. We recently reported that MC-LR has limited effects within the intestines of healthy mice, yet interestingly has significant toxicity within the intestines of mice with pre-existing colitis induced by dextran sulfate sodium (DSS). MC-LR was found to prolong DSS-induced weight loss, prolong DSS-induced bloody stools, exacerbate DSS-induced colonic shortening, exacerbate DSS-induced colonic ulceration, and exacerbate DSS-induced inflammatory cytokine upregulation. In addition, we previously reported a significant increase in expression of the pro-inflammatory receptor CD40 in the colons of these mice, along with downstream products of CD40 activation, including plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattractant protein-1 (MCP-1). In the current study, we demonstrate that knocking out CD40 attenuates the effects of MC-LR in mice with pre-existing colitis by decreasing the severity of weight loss, allowing a full recovery in bloody stools, preventing the exacerbation of colonic shortening, preventing the exacerbation of colonic ulceration, and preventing the upregulation of the pro-inflammatory and pro-fibrotic cytokines IL-1ß, MCP-1, and PAI-1. We also demonstrate the promising efficacy of a CD40 receptor blocking peptide to ameliorate the effects of MC-LR exposure in a proof-of-concept study. Our findings suggest for the first time that MC-LR acts through a CD40-dependent mechanism to exacerbate colitis.

9.
PLoS One ; 14(12): e0225604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805072

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern. With a propensity to progress towards non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma, NAFLD is an important link amongst a multitude of comorbidities including obesity, diabetes, and cardiovascular and kidney disease. As several in vivo models of hyperglycemia and NAFLD are employed to investigate the pathophysiology of this disease process, we aimed to characterize an in vitro model of hyperglycemia that was amenable to address molecular mechanisms and therapeutic targets at the cellular level. Utilizing hyperglycemic cell culturing conditions, we induced steatosis within a human hepatocyte cell line (HepG2 cells), as confirmed by electron microscopy. The deposition and accumulation of lipids within hyperglycemic HepG2 cells is significantly greater than in normoglycemic cells, as visualized and quantified by Nile red staining. Alanine aminotransferase (ALT) and alkaline phosphatase (ALP), diagnostic biomarkers for liver damage and disease, were found to be upregulated in hyperglycemic HepG2 cells as compared with normoglycemic cells. Suppression of CEACAM1, GLUT2, and PON1, and elevation of CD36, PCK1, and G6PK were also found to be characteristic in hyperglycemic HepG2 cells compared with normoglycemic cells, suggesting insulin resistance and NAFLD. These in vitro findings mirror the characteristic genetic and phenotypic profile seen in Leprdb/J mice, a well-established in vivo model of NAFLD. In conclusion, we characterize an in vitro model displaying several key genetic and phenotypic characteristics in common with NAFLD that may assist future studies in addressing the molecular mechanisms and therapeutic targets to combat this disease.


Assuntos
Hepatócitos/metabolismo , Hiperglicemia/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Biomarcadores/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos
10.
Toxins (Basel) ; 11(9)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450746

RESUMO

Microcystins are potent hepatotoxins that have become a global health concern in recent years. Their actions in at-risk populations with pre-existing liver disease is unknown. We tested the hypothesis that the No Observed Adverse Effect Level (NOAEL) of Microcystin-LR (MC-LR) established in healthy mice would cause exacerbation of hepatic injury in a murine model (Leprdb/J) of Non-alcoholic Fatty Liver Disease (NAFLD). Ten-week-old male Leprdb/J mice were gavaged with 50 µg/kg, 100 µg/kg MC-LR or vehicle every 48 h for 4 weeks (n = 15-17 mice/group). Early mortality was observed in both the 50 µg/kg (1/17, 6%), and 100 µg/kg (3/17, 18%) MC-LR exposed mice. MC-LR exposure resulted in significant increases in circulating alkaline phosphatase levels, and histopathological markers of hepatic injury as well as significant upregulation of genes associated with hepatotoxicity, necrosis, nongenotoxic hepatocarcinogenicity and oxidative stress response. In addition, we observed exposure dependent changes in protein phosphorylation sites in pathways involved in inflammation, immune function, and response to oxidative stress. These results demonstrate that exposure to MC-LR at levels that are below the NOAEL established in healthy animals results in significant exacerbation of hepatic injury that is accompanied by genetic and phosphoproteomic dysregulation in key signaling pathways in the livers of NAFLD mice.


Assuntos
Fígado/efeitos dos fármacos , Microcistinas/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Fígado/metabolismo , Fígado/patologia , Masculino , Toxinas Marinhas , Camundongos , Camundongos Endogâmicos , Microcistinas/sangue , Microcistinas/urina , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/genética , Proteômica , Análise de Sobrevida , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/urina
11.
J Clin Med ; 8(7)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311140

RESUMO

The burden of cardiovascular disease and death in chronic kidney disease (CKD) outpaces that of the other diseases and is not adequately described by traditional risk factors alone. Diminished activity of paraoxonase (PON)-1 is associated with increased oxidant stress, a common feature underlying the pathogenesis of CKD. We aimed to assess the prognostic value of circulating PON-1 protein and PON lactonase activity on adverse clinical outcomes across various stages and etiologies of CKD. Circulating PON-1 protein levels and PON lactonase activity were measured simultaneously in patients with CKD as well as a cohort of apparently healthy non-CKD subjects. Both circulating PON-1 protein levels and PON lactonase activity were significantly lower in CKD patients compared to the non-CKD subjects. Similarly, across all stages of CKD, circulating PON-1 protein and PON lactonase activity were significantly lower in patients with CKD compared to the non-CKD controls. Circulating PON lactonase activity, but not protein levels, predicted future adverse clinical outcomes, even after adjustment for traditional risk factors. The combination of lower circulating protein levels and higher activity within the CKD subjects were associated with the best survival outcomes. These findings demonstrate that diminished circulating PON lactonase activity, but not protein levels, predicts higher risk of future adverse clinical outcomes in patients with CKD.

12.
Toxins (Basel) ; 11(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242640

RESUMO

Inflammatory Bowel Disease (IBD) represents a collection of gastrointestinal disorders resulting from genetic and environmental factors. Microcystin-leucine arginine (MC-LR) is a toxin produced by cyanobacteria during algal blooms and demonstrates bioaccumulation in the intestinal tract following ingestion. Little is known about the impact of MC-LR ingestion in individuals with IBD. In this study, we sought to investigate MC-LR's effects in a dextran sulfate sodium (DSS)-induced colitis model. Mice were separated into four groups: (a) water only (control), (b) DSS followed by water (DSS), (c) water followed by MC-LR (MC-LR), and (d) DSS followed by MC-LR (DSS + MC-LR). DSS resulted in weight loss, splenomegaly, and severe colitis marked by transmural acute inflammation, ulceration, shortened colon length, and bloody stools. DSS + MC-LR mice experienced prolonged weight loss and bloody stools, increased ulceration of colonic mucosa, and shorter colon length as compared with DSS mice. DSS + MC-LR also resulted in greater increases in pro-inflammatory transcripts within colonic tissue (TNF-α, IL-1ß, CD40, MCP-1) and the pro-fibrotic marker, PAI-1, as compared to DSS-only ingestion. These findings demonstrate that MC-LR exposure not only prolongs, but also worsens the severity of pre-existing colitis, strengthening evidence of MC-LR as an under-recognized environmental toxin in vulnerable populations, such as those with IBD.


Assuntos
Colite/induzido quimicamente , Microcistinas/toxicidade , Animais , Antígenos CD40/genética , Colite/genética , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Citocinas/genética , Sulfato de Dextrana , Expressão Gênica/efeitos dos fármacos , Proliferação Nociva de Algas , Masculino , Toxinas Marinhas , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença , Baço/efeitos dos fármacos
13.
Hypertension ; 74(1): 73-82, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31132948

RESUMO

Cardiotonic steroids (CTSs) are NKA α-1 (Na+/K+-ATPase α-1) ligands that are increased in volume expanded states and associated with cardiac and renal diseases. Although initiation and resolution of inflammation is an important component of cellular injury and repair in renal disease, it is unknown whether CTS activation of NKA α-1 signaling in this setting regulates this inflammatory response. On this background, we hypothesized that CTS signaling through the NKA α-1-Src kinase complex promotes a proinflammatory response in renal epithelial and immune cells. First, we observed that the CTS telocinobufagin activated multiple proinflammatory cytokines/chemokines in renal epithelial cells, and these effects were attenuated after either NKA α-1 knockdown or with a specific inhibitor of the NKA α-1-Src kinase complex (pNaKtide). Similar findings were observed in immune cells, where we demonstrated that while telocinobufagin induced both oxidative burst and enhanced Nuclear factor kappa-light-chain-enhancer of activated B cells activation in macrophages ( P<0.05), the effects were abolished in NKA α-1+/- macrophages or by pretreatment with pNaKtide or the Src inhibitor PP2 ( P<0.01). In a series of in vivo studies, we found that 5/6th partial nephrectomy induced significantly less oxidative stress in the remnant kidney of NKA α-1+/- versus wild-type mice. Similarly, 5/6th partial nephrectomy yielded decreased levels of the urinary oxidative stress marker 8-Oxo-2'-deoxyguanosine in NKA α-1+/- versus wild-type mice. Finally, we found that in vivo inhibition of the NKA α-1-Src kinase complex with pNaKtide significantly inhibited renal proinflammatory gene expression after 5/6th partial nephrectomy. These findings suggest that the NKA α-1-Src kinase complex plays a central role in regulating the renal inflammatory response induced by elevated CTS both in vitro and in vivo.


Assuntos
Bufanolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , Insuficiência Renal Crônica/patologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , Animais , Biópsia por Agulha , Células Cultivadas , Quimiocinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Imuno-Histoquímica , Inflamação/patologia , Rim/citologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Insuficiência Renal Crônica/tratamento farmacológico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA