Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Sci Pollut Res Int ; 31(28): 40925-40940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834929

RESUMO

Phytoextraction, utilizing plants to remove soil contaminants, is a promising approach for environmental remediation but its application is often limited due to the long time requirements. This study aims to develop simplified and user-friendly probabilistic models to estimate the time required for phytoextraction of contaminants while considering uncertainties. More specifically we: i) developed probabilistic models for time estimation, ii) applied these models using site-specific data from a field experiment testing pumpkin (Cucurbita pepo ssp. pepo cv. Howden) for phytoextraction of DDT and its metabolites (ΣDDX), iii) compared timeframes derived from site-specific data with literature-derived estimates, and iv) investigated model sensitivity and uncertainties through various modelling scenarios. The models indicate that phytoextraction with pumpkin to reduce the initial total concentration of ΣDDX in the soil (10 mg/kg dw) to acceptable levels (1 mg/kg dw) at the test site is infeasible within a reasonable timeframe, with time estimates ranging from 48-123 years based on literature data or 3 570-9 120 years with site-specific data using the linear or first-order exponential model, respectively. Our results suggest that phytoextraction may only be feasible at lower initial ΣDDX concentrations (< 5 mg/kg dw) for soil polishing and that alternative phytomanagement strategies should be considered for this test site to manage the bioavailable fraction of DDX in the soil. The simplified modes presented can be useful tools in the communication with site owners and stakeholders about time approximations for planning phytoextraction interventions, thereby improving the decision basis for phytomanagement of contaminated sites.


Assuntos
Modelos Estatísticos , Poluentes do Solo , Poluentes do Solo/metabolismo , Suécia , Biodegradação Ambiental , Cucurbita , Solo/química , Árvores
2.
Ecotoxicol Environ Saf ; 264: 115408, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666203

RESUMO

Treatment of environmental media contaminated with per- and polyfluoroalkyl substances (PFAS) is crucial to mitigate mounting health risks associated with exposure. Colloidal activated carbon (CAC) has shown promise in treating contaminated soils, but understanding the interaction among PFAS during sorption is necessary for optimal remediation. This study investigated the extent to which PFAS of varying chain lengths and functional groups compete for sorption to CAC. Batch tests were conducted with natural soil and spiked water, using CAC at 0.2% w/w to remove seven PFAS with individual starting concentrations up to 0.05 mmol L-1. PFAS sorption to CAC was evaluated in three systems: a composite mixture of all studied compounds, a binary-solute system, and a single-solute system. The sorption experiments exhibited strong PFAS affinity to CAC, with removal rates between 41% and 100%, and solid/liquid partition coefficients (Kd) between 10 and 104 L kg-1. Differences were noticed among the various spiking mixtures, based on perfluorocarbon chain length, functional group, and the starting PFAS concentrations. Competition effects were detected when PFAS were in a multi-solute system, with an average 10% drop in removal, which can evidently become more relevant at higher concentrations, due to the observed non-linearity of the sorption process. The PFAS most vulnerable to competition effects in multi-solute systems were the short-chain perfluoropentanoic acid (PFPeA) and perfluorobutane sulfonic acid (PFBS), with an up to 25% reduction in removal. In bi-solute systems, perfluorooctane sulfonamide (FOSA) dominated over its ionisable counterparts, i.e. perfluorooctane sulfonic acid (PFOS) and perfluorononanoic acid (PFNA), indicating the importance of hydrophobic effects or layer formation in the sorption process. These results underscore the importance of considering competition in PFAS sorption processes when designing and implementing remediation techniques for PFAS-contaminated media.


Assuntos
Carvão Vegetal , Fluorocarbonos , Poluição Ambiental , Solo , Água
3.
Environ Pollut ; 308: 119667, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750303

RESUMO

Developing effective remediation methods for per- and polyfluoroalkyl substance (PFAS)-contaminated soils is a substantial step towards counteracting their widespread occurrence and protecting our ecosystems and drinking water sources. Stabilisation of PFAS in the subsurface using colloidal activated carbon (CAC) is an innovative, yet promising technique, requiring better understanding. In this study, dynamic soil column tests were used to assess the retardation of 10 classical perfluoroalkyl acids (PFAAs) (C5-C11 perfluoroalkyl carboxylic acids (PFCAs) and C4, C6, C8 perfluoroalkane sulfonates (PFSAs)) as well as two alternative PFAS (6:2 and 8:2 fluorotelomer sulfonates) using CAC at 0.03% w/w, to investigate the fate and transport of PFAS under CAC treatment applications. Results showed high retardation rates for long-chain PFAS and eight times higher retardation for the CAC-treated soil compared to the non-treated reference soil for the ∑PFAS. Replacement of shorter chain perfluorocarboxylic acids (PFCAs), such as perfluoropentanoic acid (PFPeA), by longer chained PFAS was observed, indicating competition effects. Partitioning coefficients (Kd values) were calculated for the CAC fraction at ∼103-105 L kg-1 for individual PFAS, while there was a significant positive correlation (p < 0.05) between perfluorocarbon chain length and Kd. Mass balance calculations showed 37% retention of ∑PFAS in treated soil columns after completion of the experiments and 99.7% higher retention rates than the reference soil. Redistribution and elution of CAC were noticed and quantified through organic carbon analysis, which showed a 23% loss of carbon during the experiments. These findings are a step towards better understanding the extent of CAC's potential for remediation of PFAS-contaminated soil and groundwater and the limitations of its applications.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Ácidos Carboxílicos , Carvão Vegetal , Ecossistema , Fluorocarbonos/análise , Solo , Poluentes Químicos da Água/análise
4.
Environ Toxicol Chem ; 41(6): 1540-1554, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262220

RESUMO

Extraction of soil samples with dilute CaCl2 solution in a routinely performed batch test has potential to be used in site-specific assessment of ecotoxicological risks at metal-contaminated sites. Soil extracts could potentially give a measure of the concentration of bioavailable metals in the soil solution, thereby including effects of soil properties and contaminant "aging." We explored the possibility of using a 0.001 M CaCl2 batch test combined with biotic ligand models (BLMs) for assessment of ecotoxicity in soils. Concentrations of Cu2+ and Zn2+ in soil extracts were linked to responses in ecotoxicity tests (microbial processes, plants, and invertebrates) previously performed on metal-spiked soils. The batch test data for soils were obtained by spiking archived soil materials using the same protocol as in the original studies. Effective concentration values based on free metal concentrations in soil extracts were related to pH by linear regressions. Finally, field-contaminated soils were used to validate model performance. Our results indicate a strong pH-dependent toxicity of the free metal ions in the soil extracts, with R2 values ranging from 0.54 to 0.93 (median 0.84), among tests and metals. Using pH-adjusted Cu2+ and Zn2+ concentrations in soil extracts, the toxic responses in spiked soils and field-contaminated soils were similar, indicating a potential for the calibrated models to assess toxic effects in field-contaminated soils, accounting for differences in soil properties and effects of contaminant "aging." Consequently, evaluation of a standardized 0.001 M CaCl2 batch test with a simplified BLM can provide the basis for an easy-to-use tool for site-specific risk assessment of metal toxicity to soil organisms. Environ Toxicol Chem 2022;41:1540-1554. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Poluentes do Solo , Solo , Cloreto de Cálcio , Cobre/toxicidade , Ligantes , Metais/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zinco/toxicidade
5.
J Environ Manage ; 249: 109345, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487666

RESUMO

The global problem of contamination of drinking water sources and the aquatic environment with per- and polyfluoroalkyl substances (PFASs) originating from highly contaminated soils is addressed in this study. For the first time, a colloidal activated carbon (AC) product (PlumeStop®) was systematically assessed for PFASs stabilization in soil. Colloidal (particle size 0.1-1.1 µm) AC has the advantage that field application is non-intrusive, comprising injection under high pressure in situ at PFAS-contaminated soil hotspots. In the assessment, 10 different soil mixtures with gradually increasing organic carbon and clay fractions were spiked with 18 different PFASs of varying perfluorocarbon chain length and four different functional groups and aged for one year. Equilibrium leaching tests showed that the ability of colloidal AC to increase sorption of PFASs to soil was highly dependent on PFAS perfluorocarbon chain length. The best treatment efficiency was observed for perfluorocarbon chain lengths 6-7 at which colloidal AC resulted in sorption of 81%, 85%, and 86% for perfluorooctanoate (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTSA) and perfluorohexane sulfonate, (PFHxS), respectively. Sorption of individual PFASs decreased significantly (p < 0.05) with increasing organic carbon content in soil treated with colloidal AC indicating stearic hindrance of the ACs pore structure. On the other hand, the sorption of the majority of PFASs increased significantly (p < 0.05) with increasing clay content in colloidal AC-treated soil, which can be explained by increase in surface area that colloidal AC can sorb to. Overall, the results indicate that the colloidal AC product tested can be useful in remediation approaches for certain PFASs under specific field conditions and PFAS contamination.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Carvão Vegetal , Argila , Solo
6.
Chemosphere ; 207: 183-191, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29793030

RESUMO

Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al3+, Ca2+ and Na+. Often, the organic C-normalized partitioning coefficients (KOC) showed a negative relationship to both pH (Δlog KOC/ΔpH = -0.32 ±â€¯0.11 log units) and the SOM bulk net negative charge (Δlog KOC = -1.41 ±â€¯0.40 per log unit molc g-1). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log KOC units per CF2 moiety for C3-C10 PFCAs and C4, C6, and C8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C5-C8 PFCAs and C6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C9-C11 and C13 PFCAs, C8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant.


Assuntos
Cátions/química , Fluorocarbonos/química , Solo/química , Poluentes Químicos da Água/química , Fluorocarbonos/análise , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-26061202

RESUMO

The increasing use of silver nanoparticles (AgNPs) in consumer products triggers the need for investigations that improve the understanding of their chemical transformations upon environmental entry. Such knowledge provides crucial information for toxicological studies and risk assessments. Interactions with the soil compartment need to be explored as there are evident risks of the dispersion of both AgNPs and of released Ag ions/complexes present in wastewater-treated sludge that is distributed onto agricultural land. The dissolution and fractionation in solution of bare (AgNP-bare, noncoated) and coated AgNPs (AgNP-coat, stabilized with two nonionic surfactants, polyoxyethylene glycerol trioleate and Tween 20) were investigated after 4 and 48 h in suspensions of one sandy and one clayey soil of different pHs (3.3, 5.2). Parallel experiments were performed with soil suspensions spiked with easily soluble AgNO3. Silver in the water phase was separated in a dissolved fraction (mainly Ag ions/complexes) and a particle fraction (mainly AgNP/agglomerates/Ag adsorbed on organic matter) by means of ultracentrifugation. Bare AgNPs were nonstable and dissolved to a significantly larger extent in the sandy soil mixture compared to coated AgNPs. The concentration of dissolved Ag (ions/complexes) in the water phase was similar in the case of bare AgNPs and AgNO3 (at pH 3 and 5.2) after 24 h in sandy soil, which implies a high degree of dissolution of bare AgNPs (50-100%). In contrast, approximately 50% of the coated AgNPs remained in the water phase after 48 h of equilibration in the sandy soil at pH 5.2. The clayey soil had a significantly higher sorption capacity of Ag compared with the sandy soil, as Ag in the case of coated AgNPs was only detected in the water phase of pH 5.2 (<1% of added Ag). Ultracentrifugation was proven more efficient compared with microfiltration to separate the dissolved Ag fraction (ions/complexes) and the particle fraction (AgNPs/agglomerates) of the water phase. This fractionation is not a measure of any potential toxicity.


Assuntos
Nanopartículas Metálicas/química , Esgotos/química , Prata/química , Poluentes do Solo/química , Solo/química , Águas Residuárias/química , Solubilidade , Suspensões , Suécia
8.
Chemosphere ; 119: 1268-1274, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460771

RESUMO

Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a class of ubiquitously occurring pollutants of which little is known. They can be co-emitted with PAHs or formed from PAHs in the environment. The environmental fate and risk of oxy-PAHs are difficult to assess due to a lack of methods to quantify their pore water concentrations. One sampler that can be used to determine freely dissolved concentrations of organic contaminants is polyoxymethylene (POM). In this study, POM - water partition coefficients (KPOM) were determined for 11 oxy-PAHs. KPOM values of 8 PAHs with similar hydrophobicities as the oxy-PAHs were determined for comparison. Results showed that logKPOM values ranged from 2.64 to 4.82 for the PAHs (2-4 rings), similar to previously determined values. LogKPOM values for investigated oxy-PAHs ranged from 0.96 to 5.36. The addition of carbonylic oxygen on a parent PAH generally lowered KPOM by 0.5 to 1.0 log units, which is attributable to the presence of carbonylic oxygens increasing water solubility. The KPOM values presented here will facilitate simultaneous assessments of freely dissolved water concentrations of oxy-PAHs and PAHs in environmental media.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Resinas Sintéticas/análise , Poluentes Químicos da Água/análise , Limite de Detecção , Solubilidade
9.
Environ Sci Technol ; 48(19): 11187-95, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25216345

RESUMO

Soil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs). The passive sampler polyoxymethylene (POM) was used to measure the equilibrium freely dissolved porewater concentration, Cpw, of all PACs. The obtained organic carbon normalized partitioning coefficients, KTOC, show that sorption of these native PACs is much stronger than observed in laboratory-spiked soils (typically by factors 10 to 100), which has been reported previously for PAHs but here for the first time for oxy-PAHs and N-PACs. A recently developed KTOC model for historically contaminated sediments predicted the 597 unique, native KTOC values in this study within a factor 30 for 100% of the data and a factor 3 for 58% of the data, without calibration. This model assumes that TOC in pyrogenic-impacted areas sorbs similarly to coal tar, rather than octanol as typically assumed. Black carbon (BC) inclusive partitioning models exhibited substantially poorer performance. Regarding bioaccumulation, Cpw combined with liposome-water partition coefficients corresponded better with measured worm lipid concentrations, Clipid (within a factor 10 for 85% of all PACs and soils), than Cpw combined with octanol-water partition coefficients (within a factor 10 for 76% of all PACs and soils). E. crypticus mortality and reproducibility were also quantified. No enhanced mortality was observed in the 21 historically contaminated soils despite expectations from PAH spiked reference soils. Worm reproducibility weakly correlated to Clipid of PACs, though the contributing influence of metal concentrations and soil texture could not be taken into account. The good agreement of POM-derived Cpw with independent soil and lipid partitioning models further supports that soil risk assessments would improve by accounting for bioavailability. Strategies for including bioavailability in soil risk assessment are presented.


Assuntos
Oligoquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Animais , Bélgica , Disponibilidade Biológica , Monitoramento Ambiental/métodos , França , Oligoquetos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Reprodutibilidade dos Testes , Solo/química , Poluentes do Solo/farmacocinética , Fuligem , Suécia , Água , Poluentes Químicos da Água/farmacocinética
10.
Environ Toxicol Chem ; 33(11): 2479-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25053440

RESUMO

Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3 > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3 > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits.


Assuntos
Intoxicação por Metais Pesados , Hordeum/efeitos dos fármacos , Metais/toxicidade , Intoxicação , Poluentes do Solo/toxicidade , Cloretos/toxicidade , Cobre/toxicidade , Monitoramento Ambiental/métodos , Poluição Ambiental , Mineração , Medição de Risco , Solo/química , Compostos de Zinco/toxicidade
11.
Environ Sci Technol ; 48(3): 1753-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24422446

RESUMO

Chromium is a common soil contaminant, and it often exists as chromium(III). However, limited information exists on the coordination chemistry and stability of chromium(III) complexes with natural organic matter (NOM). Here, the complexation of chromium(III) to mor layer material and to Suwannee River Fulvic Acid (SRFA) was investigated using EXAFS spectroscopy and batch experiments. The EXAFS results showed a predominance of monomeric chromium(III)-NOM complexes at low pH (<5), in which only Cr···C and Cr-O-C interactions were observed in the second coordination shell. At pH > 5 there were polynuclear chromium(III)-NOM complexes with Cr···Cr interactions at 2.98 Å and for SRFA also at 3.57 Å, indicating the presence of dimers (soil) and tetramers (SRFA). The complexation of chromium(III) to NOM was intermediate between that of iron(III) and aluminum(III). Chromium(III) complexation was slow at pH < 4: three months or longer were required to reach equilibrium. The results were used to constrain chromium-NOM complexation in the Stockholm Humic Model (SHM): a monomeric complex dominated at pH < 5, whereas a dimeric complex dominated at higher pH. The optimized constant for the monomeric chromium(III) complex was in between those of the iron(III) and aluminum(III) NOM complexes. Our study suggests that chromium(III)-NOM complexes are important for chromium speciation in many environments.


Assuntos
Benzopiranos/química , Cromo/química , Substâncias Húmicas , Modelos Químicos , Poluentes do Solo/química , Adsorção , Alumínio/química , Compostos Férricos/química , Cinética , Rios/química , Espectroscopia por Absorção de Raios X
12.
Environ Sci Technol ; 42(7): 2367-73, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18504967

RESUMO

Iron(III) competes with trace metals for binding sites on organic ligands. We used X-ray absorption fine structure (EXAFS) spectroscopy to determine the binding mode and oxidation state of iron in solutions initially containing only iron(III) and fulvic acid at pHs 2 and 4. EXAFS spectra were recorded at different times after sample preparation. Iron was octahedrally configured with inner-sphere Fe-O interactions at 1.98-2.10 A, depending on the oxidation state of iron. Iron(III) formed complexes with fulvic acid within 15 min. Iron(III) was reduced to iron(II) with time at pH 2, whereas no significant reduction occurred at pH 4. No signs of dimeric/trimeric hydrolysis products were found in any of the solution samples (<0.45 microm). However, the isolated precipitate of the pH 2 sample (>0.45 microm) showed Fe...Fe distances, indicating the presence of tightly packed iron(III) trimers and/or clusters of corner-sharing octahedra. It is suggested that the binding mode of iron(III) to fulvic acid at low pH may be phase-dependent: in solution mononuclear complexes predominate, whereas in the solid phase hydrolyzed polynuclear iron(III) complexes form, even at very low pH values. The observed pH dependence of iron(III) reduction was consistent with expected results based on thermodynamic calculations for model ligands.


Assuntos
Benzopiranos/química , Ferro/química , Análise Espectral/métodos , Análise de Fourier , Hidrólise , Oxirredução , Soluções , Água/química , Raios X
13.
Environ Sci Technol ; 41(12): 4286-91, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17626426

RESUMO

Information on Cu speciation in municipal solid waste incineration (MSWI) bottom ash leachate is needed for Cu leaching predictions and toxicity estimates. The complexation of Cu with dissolved organic matter (DOM) in leachates from a stored MSWI bottom ash was studied potentiometrically using a Cu-ion selective electrode. More than 95% of the copper was bound to DOM in the hydrophilic fraction of the leachate, indicating that the hydrophilic acids contribute to Cu complex formation. The hydrophilic acids constituted 58% of the dissolved organic carbon in the ash leachate. Comparisons between experimental results and speciation calculations with the NICA-Donnan model and the Stockholm humic model indicated differences between the ash DOM and the natural DOM for which the models have been calibrated. The ratio of carboxylic binding sites to phenolic binding sites was 2 times larger in ash DOM, and the Cu-binding affinity of the former was stronger than accounted for by the generic Cu-binding parameters. The Cu-binding affinity of the phenolic sites, on the other hand, was weaker. When these parameters were adjusted, a good description of the experimental data was obtained.


Assuntos
Cobre/química , Fuligem/química , Cidades , Incineração , Modelos Químicos , Compostos Orgânicos/química , Eliminação de Resíduos
14.
Environ Sci Technol ; 41(4): 1232-7, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17593724

RESUMO

The complexation of iron(III) to soil organic matter is important for the binding of trace metals in natural environments because of competition effects. In this study, we used extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the binding mode for iron(III) in two soil samples from organic mor layers, one of which was also treated with iron(III). In most cases the EXAFS spectra had three significant contributions, inner-core Fe-O/N interactions at about 2.02(2) A, Fe-C interactions in the second scattering shell at 3.00(4) A, and a mean Fe-Fe distance at 3.37(3) A. One untreated sample showed features typical for iron (hydr)oxides; however, after treatment of iron(III) the EXAFS spectrum was dominated by organically complexed iron. The presence of a Fe-Fe distance in all samples showed that the major part of the organically complexed iron was hydrolyzed, most likely in a mixture of complexes with an inner core of (O5Fe)2O and (O5Fe)3O. These results were used to constrain a model for metal-humic complexation, the Stockholm Humic Model (SHM). The model was able to describe iron(III) binding verywell at low pH considering only one dimeric iron(III)-humic complex. The competition effect on trace metals was also well described.


Assuntos
Substâncias Húmicas , Metais/química , Modelos Químicos , Solo , Análise Espectral , Raios X
15.
Environ Toxicol Chem ; 25(3): 891-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16566176

RESUMO

The overall objective of this paper is to present an extensive set of data for corrosion-induced copper dispersion and its environmental interaction with solid surfaces in the near vicinity of buildings. Copper dispersion is discussed in terms of total copper flows, copper speciation and bioavailability at the immediate release situation, and its changes during transport from source to recipient. Presented results are based on extensive field exposures (eight years) at an urban site, laboratory investigations of the runoff process, published field data, generated predictive site-specific runoff rate models, and reactivity investigations toward various natural and manmade surfaces, such as those in soil, limestone, and concrete. Emphasis is placed on the interaction of copper-containing runoff water with different soil systems through long-term laboratory column investigations. The fate of copper is discussed in terms of copper retention, copper chemical speciation, breakthrough capacities, and future mobilization based on changes in copper concentrations in the percolate water, computer modeling using the Windermere Humic Aqueous Model, and sequential extractions. The results illustrate that, for scenarios where copper comes in extensive contact with solid surfaces, such as soil and limestone, a large fraction of released copper is retained already in the immediate vicinity of the building. In all, both the total copper concentration in runoff water and its bioavailable part undergo a significant and rapid reduction.


Assuntos
Cobre/análise , Monitoramento Ambiental/métodos , Corrosão , Meio Ambiente , Poluição Ambiental , Medição de Risco , Poluentes do Solo/análise , Testes de Toxicidade , Água , Movimentos da Água , Poluentes Químicos da Água
16.
Environ Sci Technol ; 39(14): 5372-7, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16082968

RESUMO

Models are available for simulations of proton dissociation and cation binding by natural organic matter; two examples are the NICA-Donnan and Stockholm Humic (SHM) models. To model proton and metal binding, it is necessary to properly account for the ionic strength dependence of proton dissociation. In previous applications of the models for soils itwas assumed that the electrostatic interactions for solid-phase humic substances were the same as in solution; this assumption was recently challenged. Therefore, we reanalyzed previously published acid-base titrations of acid-washed Sphagnum peat, and we produced additional data sets for two Sphagnum peats and two Spodosol Oe horizons. For the soil suspensions, the original NICA-Donnan and SHM models, which were developed for dissolved humic substances, underestimated the observed salt dependence considerably. When a fixed Donnan volume of 1 L kg(-1) for humic substances in the solid phase was used, the NICA-Donnan model fits were much improved. Also for SHM, slight changes produced improved model fits. The models also produced acceptable simulations of the dissolved Ca, Mg, and Cd concentrations, provided that cation selectivitywas introduced. In conclusion, the proposed extensions to the NICA-Donnan and SHM models were shown to predict the salt dependence of solid-phase humic substances more satisfactorily than earlier model versions.


Assuntos
Metais Pesados/química , Modelos Teóricos , Prótons , Poluentes do Solo , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cloreto de Sódio/química , Solo , Solubilidade , Sphagnopsida/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA