Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 10(3): 1341-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334147

RESUMO

The small size and heterogeneity of the pores in bacterial nanocellulose (BNC) hydrogels limit the ingrowth of cells and their use as tissue-engineered implant materials. The use of placeholders during BNC biosynthesis or post-processing steps such as (touch-free) laser perforation can overcome this limitation. Since three-dimensionally arranged channels may be required for homogeneous and functional seeding, three-dimensional (3-D) laser perforation of never-dried BNC hydrogels was performed. Never-dried BNC hydrogels were produced in different shapes by: (i) the cultivation of Gluconacetobacter xylinus (DSM 14666; synonym Komagataeibacter xylinus) in nutrient medium; (ii) the removal of bacterial residues/media components (0.1M NaOH; 30 min; 100 °C) and repeated washing (deionized water; pH 5.8); (iii) the unidirectional or 3-D laser perforation and cutting (pulsed CO2 Rofin SC × 10 laser; 220 µm channel diameter); and (iv) the final autoclaving (2M NaOH; 121 °C; 20 min) and washing (pyrogen-free water). In comparison to unmodified BNC, unidirectionally perforated--and particularly 3-D-perforated - BNC allowed ingrowth into and movement of vital bovine/human chondrocytes throughout the BNC nanofiber network. Laser perforation caused limited structural modifications (i.e. fiber or globular aggregates), but no chemical modifications, as indicated by Fourier transform infrared spectroscopy, X-ray photoelectron scattering and viability tests. Pre-cultured human chondrocytes seeding the surface/channels of laser-perforated BNC expressed cartilage-specific matrix products, indicating chondrocyte differentiation. 3-D-perforated BNC showed compressive strength comparable to that of unmodified samples. Unidirectionally or 3-D-perforated BNC shows high biocompatibility and provides short diffusion distances for nutrients and extracellular matrix components. Also, the resulting channels support migration into the BNC, matrix production and phenotypic stabilization of chondrocytes. It may thus be suitable for in vivo application, e.g. as a cartilage replacement material.


Assuntos
Cartilagem/fisiologia , Diferenciação Celular/efeitos dos fármacos , Celulose/farmacologia , Condrócitos/citologia , Gluconacetobacter xylinus/química , Lasers , Nanopartículas/química , Próteses e Implantes , Idoso , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/ultraestrutura , Força Compressiva/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Humanos , Hidrogéis , Masculino , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Reação em Cadeia da Polimerase em Tempo Real , Hidróxido de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA