Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018888

RESUMO

In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various nonhuman species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and appropriately accounting for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a 'Mutationathon,' a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a twofold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria, and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.


Assuntos
Técnicas Genéticas , Mutação em Linhagem Germinativa , Macaca mulatta/genética , Taxa de Mutação , Animais , Técnicas Genéticas/instrumentação , Células Germinativas , Laboratórios , Linhagem , Padrões de Referência
3.
Nucleic Acids Res ; 46(19): 10184-10194, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30247639

RESUMO

During protein synthesis genetic instructions are passed from DNA via mRNA to the ribosome to assemble a protein chain. Occasionally, stop codons in the mRNA are bypassed and translation continues into the untranslated region (3'-UTR). This process, called translational readthrough (TR), yields a protein chain that becomes longer than would be predicted from the DNA sequence alone. Protein sequences vary in propensity for translational errors, which may yield evolutionary constraints by limiting evolutionary paths. Here we investigated TR in Saccharomyces cerevisiae by analysing ribosome profiling data. We clustered proteins as either prone or non-prone to TR, and conducted comparative analyses. We find that a relatively high frequency (5%) of genes undergo TR, including ribosomal subunit proteins. Our main finding is that proteins undergoing TR are highly expressed and have intrinsically disordered C-termini. We suggest that highly expressed proteins may compensate for the deleterious effects of TR by having intrinsically disordered C-termini, which may provide conformational flexibility but without distorting native function. Moreover, we discuss whether minimizing deleterious effects of TR is also enabling exploration of the phenotypic landscape of protein isoforms.


Assuntos
Regiões 3' não Traduzidas/genética , Códon de Terminação , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Terminação Traducional da Cadeia Peptídica/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/química , Códon/química , Códon/metabolismo , Biologia Computacional , Análise Mutacional de DNA , Mutação da Fase de Leitura/genética , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA