Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 14(1): 3837, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380662

RESUMO

Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces.


Assuntos
Ecossistema , Tundra , Sementes , Mudança Climática , Fenótipo
2.
Sci Data ; 9(1): 755, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477373

RESUMO

Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.

3.
Nat Ecol Evol ; 5(12): 1582-1593, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545216

RESUMO

Many experiments have shown that biodiversity enhances ecosystem functioning. However, we have little understanding of how environmental heterogeneity shapes the effect of diversity on ecosystem functioning and to what extent this diversity effect is mediated by variation in species richness or species turnover. This knowledge is crucial to scaling up the results of experiments from local to regional scales. Here we quantify the diversity effect and its components-that is, the contributions of variation in species richness and species turnover-for 22 ecosystem functions of microorganisms, plants and animals across 13 major ecosystem types on Mt Kilimanjaro, Tanzania. Environmental heterogeneity across ecosystem types on average increased the diversity effect from explaining 49% to 72% of the variation in ecosystem functions. In contrast to our expectation, the diversity effect was more strongly mediated by variation in species richness than by species turnover. Our findings reveal that environmental heterogeneity strengthens the relationship between biodiversity and ecosystem functioning and that species richness is a stronger driver of ecosystem functioning than species turnover. Based on a broad range of taxa and ecosystem functions in a non-experimental system, these results are in line with predictions from biodiversity experiments and emphasize that conserving biodiversity is essential for maintaining ecosystem functioning.


Assuntos
Biodiversidade , Ecossistema , Animais , Plantas , Tanzânia
4.
Ecology ; 102(12): e03521, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449883

RESUMO

Patterns of insect diversity along elevational gradients are well described in ecology. However, it remains little tested how variation in the quantity, quality, and diversity of food resources influence these patterns. Here we analyzed the direct and indirect effects of climate, food quantity (estimated by net primary productivity), quality (variation in the specific leaf area index, leaf nitrogen to phosphorus and leaf carbon to nitrogen ratio), and food diversity (diversity of leaf traits) on the species richness of phytophagous beetles along the broad elevation and land use gradients of Mt. Kilimanjaro, Tanzania. We sampled beetles at 65 study sites located in both natural and anthropogenic habitats, ranging from 866 to 4,550 m asl. We used path analysis to unravel the direct and indirect effects of predictor variables on species richness. In total, 3,154 phytophagous beetles representing 19 families and 304 morphospecies were collected. We found that the species richness of phytophagous beetles was bimodally distributed along the elevation gradient with peaks at the lowest (˜866 m asl) and upper mid-elevations (˜3,200 m asl) and sharply declined at higher elevations. Path analysis revealed temperature- and climate-driven changes in primary productivity and leaf trait diversity to be the best predictors of changes in the species richness of phytophagous beetles. Species richness increased with increases in mean annual temperature, primary productivity, and with increases in the diversity of leaf traits of local ecosystems. Our study demonstrates that, apart from temperature, the quantity and diversity of food resources play a major role in shaping diversity gradients of phytophagous insects. Drivers of global change, leading to a change of leaf traits and causing reductions in plant diversity and productivity, may consequently reduce the diversity of herbivore assemblages.


Assuntos
Besouros , Altitude , Animais , Biodiversidade , Ecossistema , Humanos , Tanzânia
5.
J Anim Ecol ; 88(11): 1777-1788, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294458

RESUMO

Temperature, primary productivity, plant functional traits, and herbivore abundances are considered key predictors of leaf herbivory but their direct and indirect contributions to community-level herbivory are not well understood along broad climatic gradients. Here, we determined elevational herbivory patterns and used a path analytical approach to disentangle the direct and indirect effects of climate, land use, net primary productivity (NPP), herbivore abundance, and plant functional traits on community-level invertebrate herbivory along the extensive elevational and land use gradients at Mt. Kilimanjaro, Tanzania. We recorded standing leaf herbivory caused by leaf chewers, leaf miners and leaf gallers on 55 study sites distributed in natural and anthropogenic habitats along a 3,060 m elevation gradient. We related the total community-level herbivory to climate (temperature and precipitation), NPP, plant functional traits (specific leaf area, leaf carbon-to-nitrogen [CN] ratio and leaf nitrogen-to-phosphorus [NP] ratio) and herbivore abundances. Leaf herbivory ranged from 5% to 11% along the elevation gradient. Total leaf herbivory showed unimodal pattern in natural habitats but a strongly contrasting bimodal pattern in anthropogenic habitats. We also detected some variation in the patterns of leaf herbivory along environmental gradients across feeding guilds with leaf chewers being responsible for a disproportionally large part of herbivory. Path analyses indicated that the variation in leaf herbivory was mainly driven by changes in leaf CN and NP ratios which were closely linked to changes in NPP in natural habitats. Similarly, patterns of leaf herbivory in anthropogenic habitats were best explained by variation in leaf CN ratios and a negative effect of land use. Our study elucidates the strong role of leaf nutrient stoichiometry and its linkages to climate and NPP for explaining the variation in leaf herbivory along broad climatic gradients. Furthermore, the study suggests that climatic changes and nutrient inputs in the course of land use change may alter leaf herbivory and consequently energy and nutrient fluxes in terrestrial habitats.


Assuntos
Herbivoria , Invertebrados , Animais , Ecossistema , Folhas de Planta , Plantas , Tanzânia
6.
Nature ; 568(7750): 88-92, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918402

RESUMO

Agriculture and the exploitation of natural resources have transformed tropical mountain ecosystems across the world, and the consequences of these transformations for biodiversity and ecosystem functioning are largely unknown1-3. Conclusions that are derived from studies in non-mountainous areas are not suitable for predicting the effects of land-use changes on tropical mountains because the climatic environment rapidly changes with elevation, which may mitigate or amplify the effects of land use4,5. It is of key importance to understand how the interplay of climate and land use constrains biodiversity and ecosystem functions to determine the consequences of global change for mountain ecosystems. Here we show that the interacting effects of climate and land use reshape elevational trends in biodiversity and ecosystem functions on Africa's largest mountain, Mount Kilimanjaro (Tanzania). We find that increasing land-use intensity causes larger losses of plant and animal species richness in the arid lowlands than in humid submontane and montane zones. Increases in land-use intensity are associated with significant changes in the composition of plant, animal and microorganism communities; stronger modifications of plant and animal communities occur in arid and humid ecosystems, respectively. Temperature, precipitation and land use jointly modulate soil properties, nutrient turnover, greenhouse gas emissions, plant biomass and productivity, as well as animal interactions. Our data suggest that the response of ecosystem functions to land-use intensity depends strongly on climate; more-severe changes in ecosystem functioning occur in the arid lowlands and the cold montane zone. Interactions between climate and land use explained-on average-54% of the variation in species richness, species composition and ecosystem functions, whereas only 30% of variation was related to single drivers. Our study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.


Assuntos
Agricultura/estatística & dados numéricos , Altitude , Biodiversidade , Ecossistema , Clima Tropical , Animais , Umidade , Microbiologia , Plantas , Chuva , Tanzânia , Temperatura
7.
Nat Commun ; 9(1): 3177, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093613

RESUMO

Species' functional traits set the blueprint for pair-wise interactions in ecological networks. Yet, it is unknown to what extent the functional diversity of plant and animal communities controls network assembly along environmental gradients in real-world ecosystems. Here we address this question with a unique dataset of mutualistic bird-fruit, bird-flower and insect-flower interaction networks and associated functional traits of 200 plant and 282 animal species sampled along broad climate and land-use gradients on Mt. Kilimanjaro. We show that plant functional diversity is mainly limited by precipitation, while animal functional diversity is primarily limited by temperature. Furthermore, shifts in plant and animal functional diversity along the elevational gradient control the niche breadth and partitioning of the respective other trophic level. These findings reveal that climatic constraints on the functional diversity of either plants or animals determine the relative importance of bottom-up and top-down control in plant-animal interaction networks.


Assuntos
Biodiversidade , Aves/fisiologia , Ecossistema , Flores/fisiologia , Insetos/fisiologia , Simbiose , Altitude , Animais , Teorema de Bayes , Clima , Comportamento Alimentar , Frutas , Filogenia , Plantas , Projetos de Pesquisa , Especificidade da Espécie , Tanzânia
8.
Front Plant Sci ; 8: 891, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611807

RESUMO

Agricultural land use imposes a major disturbance on ecosystems worldwide, thus greatly modifying the taxonomic and functional composition of plant communities. However, mechanisms of community assembly, as assessed by plant functional traits, are not well known for dryland ecosystems under agricultural disturbance. Here we investigated trait responses to disturbance intensity and availability of resources to identify the main drivers of changes in composition of semiarid communities under diverging land use intensities. The eastern Mediterranean study region is characterized by an extended rainless season and by very diverse, mostly annual communities. At 24 truly replicated sites, we recorded the frequency of 241 species and the functional traits of the 53 most common species, together with soil resources and disturbance intensity across a land use gradient ranging from ungrazed shrubland to intensively managed cropland (six land use types). Multivariate RLQ analysis (linking functional traits, sites and environmental factors in a three-way ordination) and fourth corner analysis (revealing significant relations between traits and environmental factors) were used in a complementary way to get insights into trait-environment relations. Results revealed that traits related to plant size (reflecting light absorption and competitive ability) increased with resource availability, such as soil phosphorus and water holding capacity. Leaf economic traits, such as specific leaf area (SLA), leaf nitrogen content (LNC), and leaf dry matter content showed low variation across the disturbance gradient and were not related to environmental variables. In these herbaceous annual communities where plants grow and persist for just 3-5 months, SLA and LNC were unrelated, which together with relatively high SLA values might point to strategies of drought escape and grazing avoidance. Seed mass was high both at higher and lower resource availability, whereas seed number increased with the degree of disturbance. The strong response of size and reproduction traits, and the missing response of leaf economic traits reveal light interception and resource competition rather than resource acquisition and litter decomposition as drivers of plant community composition. Deviations from trait relationships observed in commonly studied temperate ecosystems confirm that climatic conditions play a fundamental role by filtering species with particular life forms and ecological strategies.

9.
PLoS One ; 12(3): e0174157, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319155

RESUMO

The effect-response framework states that plant functional traits link the abiotic environment to ecosystem functioning. One ecosystem property is the body size of the animals living in the system, which is assumed to depend on temperature or resource availability, among others. For primary consumers, resource availability may directly be related to plant traits, while for secondary consumers the relationship is indirect. We used plant traits to describe resource availability along an elevational gradient on Mount Kilimanjaro, Tanzania. Using structural equation models, we determined the response of plant traits to changes in precipitation, temperature and disturbance with and assessed whether abiotic conditions or community-weighted means of plant traits are stronger predictors of the mean size of bees, moths, frugivorous birds, and insectivorous birds. Traits indicating tissue density and nutrient content strongly responded to variations in precipitation, temperature and disturbance. They had direct effects on pollination and fruit traits. However, the average body sizes of the animal groups considered could only be explained by temperature and habitat structure, not by plant traits. Our results demonstrate a strong link between traits and the abiotic environment, but suggest that temperature is the most relevant predictor of mean animal body size. Community-weighted means of plant traits and body sizes appear unsuitable to capture the complexity of plant-animal interactions.


Assuntos
Abelhas/anatomia & histologia , Aves/anatomia & histologia , Tamanho Corporal , Mariposas/anatomia & histologia , Fenômenos Fisiológicos Vegetais , Animais , Meio Ambiente , Modelos Teóricos , Tanzânia
10.
Nat Commun ; 7: 13736, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004657

RESUMO

The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities.


Assuntos
Biodiversidade , Altitude , Animais , Ecossistema , Geografia , Modelos Biológicos , Filogenia , Plantas/classificação , Especificidade da Espécie , Tanzânia , Temperatura
11.
New Phytol ; 212(4): 838-855, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27783423

RESUMO

I. 839 II. 839 III. 841 IV. 845 V. 847 VI. 848 VII. 849 VIII. 851 851 852 References 852 Appendix A1 854 SUMMARY: Plant biologists often grow plants in growth chambers or glasshouses with the ultimate aim to understand or improve plant performance in the field. What is often overlooked is how results from controlled conditions translate back to field situations. A meta-analysis showed that lab-grown plants had faster growth rates, higher nitrogen concentrations and different morphology. They remained smaller, however, because the lab plants had grown for a much shorter time. We compared glasshouse and growth chamber conditions with those in the field and found that the ratio between the daily amount of light and daily temperature (photothermal ratio) was consistently lower under controlled conditions. This may strongly affect a plant's source : sink ratio and hence its overall morphology and physiology. Plants in the field also grow at higher plant densities. A second meta-analysis showed that a doubling in density leads on average to 34% smaller plants with strong negative effects on tiller or side-shoot formation but little effect on plant height. We found the r2 between lab and field phenotypic data to be rather modest (0.26). Based on these insights, we discuss various alternatives to facilitate the translation from lab results to the field, including several options to apply growth regimes closer to field conditions.


Assuntos
Agricultura , Desenvolvimento Vegetal , Genótipo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
12.
Artigo em Inglês | MEDLINE | ID: mdl-27114584

RESUMO

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.


Assuntos
Biomassa , Ecossistema , Animais , Biodiversidade , Modelos Biológicos , Plâncton/fisiologia , Fenômenos Fisiológicos Vegetais , Dinâmica Populacional
13.
Artigo em Inglês | MEDLINE | ID: mdl-27114585

RESUMO

Ecosystems managed for production of biomass are often characterized by low biodiversity because management aims to optimize single ecosystem functions (i.e. yield) involving deliberate selection of species or cultivars. In consequence, considerable differences in observed plant species richness and productivity remain across systems, and the drivers of these differences have remained poorly resolved so far. In addition, it has remained unclear if species richness feeds back on ecosystem functions such as yield in real-world systems. Here, we establish N = 360 experimental plots across a broad range of managed ecosystems in several European countries, and use structural equation models to unravel potential drivers of plant species richness. We hypothesize that the relationships between productivity, total biomass and observed species richness are affected by management intensity, and that these effects differ between habitat types (dry grasslands, grasslands, and wetlands). We found that local management was an important driver of species richness across systems. Management caused system disturbance, resulting in reduced productivity yet enhanced total biomass. Plant species richness was directly and positively driven by management, with consistently negative effects of total biomass. Productivity effects on richness were positive, negative or neutral. Our study shows that management and total biomass drive plant species richness across real-world managed systems.


Assuntos
Biodiversidade , Biomassa , Pradaria , Plantas , Áreas Alagadas , Europa (Continente) , Modelos Biológicos
14.
Nature ; 529(7585): 167-71, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26700811

RESUMO

Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.


Assuntos
Fenótipo , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Biodiversidade , Bases de Dados Factuais , Variação Genética , Internacionalidade , Modelos Biológicos , Nitrogênio/análise , Tamanho do Órgão , Desenvolvimento Vegetal , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Plantas/classificação , Reprodução , Sementes/anatomia & histologia , Seleção Genética , Especificidade da Espécie
15.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832402

RESUMO

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Assuntos
Biodiversidade , Atividades Humanas , Animais , Conservação dos Recursos Naturais/tendências , Ecologia/tendências , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
16.
PLoS One ; 10(4): e0123300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915854

RESUMO

Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha(-1) yr(-1). Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.


Assuntos
Biomassa , Ciclo do Carbono , Carbono/análise , Floresta Úmida , África , Simulação por Computador
17.
Ecol Evol ; 4(14): 2799-811, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25165520

RESUMO

In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.

18.
Ecology ; 90(3): 598-611, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19341132

RESUMO

Land use and climate changes induce shifts in plant functional diversity and community structure, thereby modifying ecosystem processes. This is particularly true for litter decomposition, an essential process in the biogeochemical cycles of carbon and nutrients. In this study, we asked whether changes in functional traits of living leaves in response to changes in land use and climate were related to rates of litter potential decomposition, hereafter denoted litter decomposability, across a range of 10 contrasting sites. To disentangle the different control factors on litter decomposition, we conducted a microcosm experiment to determine the decomposability under standard conditions of litters collected in herbaceous communities from Europe and Israel. We tested how environmental factors (disturbance and climate) affected functional traits of living leaves and how these traits then modified litter quality and subsequent litter decomposability. Litter decomposability appeared proximately linked to initial litter quality, with particularly clear negative correlations with lignin-dependent indices (litter lignin concentr tion, lignin:nitrogen ratio, and fiber component). Litter quality was directly related to community-weighted mean traits. Lignin-dependent indices of litter quality were positively correlated with community-weighted mean leaf dry matter content (LDMC), and negatively correlated with community-weighted mean leaf nitrogen concentration (LNC). Consequently, litter decomposability was correlated negatively with community-weighted mean LDMC, and positively with community-weighted mean LNC. Environmental factors (disturbance and climate) influenced community-weighted mean traits. Plant communities experiencing less frequent or less intense disturbance exhibited higher community-weighted mean LDMC, and therefore higher litter lignin content and slower litter decomposability. LDMC therefore appears as a powerful marker of both changes in land use and of the pace of nutrient cycling across 10 contrasting sites.


Assuntos
Clima , Ecossistema , Lignina/metabolismo , Folhas de Planta/metabolismo , Poaceae/fisiologia , Europa (Continente) , Israel , Lignina/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Folhas de Planta/química , Especificidade da Espécie , Fatores de Tempo
19.
Ecol Lett ; 12(1): 66-74, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19016826

RESUMO

The ongoing decline of many plant species in Northwest Europe indicates that traditional conservation measures to improve the habitat quality, although useful, are not enough to halt diversity losses. Using recent databases, we show for the first time that differences between species in adaptations to various dispersal vectors, in combination with changes in the availability of these vectors, contribute significantly to explaining losses in plant diversity in Northwest Europe in the 20th century. Species with water- or fur-assisted dispersal are over-represented among declining species, while others (wind- or bird-assisted dispersal) are under-represented. Our analysis indicates that the 'colonization deficit' due to a degraded dispersal infrastructure is no less important in explaining plant diversity losses than the more commonly accepted effect of eutrophication and associated niche-based processes. Our findings call for measures that aim to restore the dispersal infrastructure across entire regions and that go beyond current conservation practices.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Demografia , Ecossistema , Plantas , Sementes/fisiologia , Europa (Continente) , Modelos Logísticos , Nitrogênio/metabolismo , Dinâmica Populacional , Reprodução/fisiologia
20.
Ann Bot ; 99(5): 967-85, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17085470

RESUMO

BACKGROUND AND AIMS: A standardized methodology to assess the impacts of land-use changes on vegetation and ecosystem functioning is presented. It assumes that species traits are central to these impacts, and is designed to be applicable in different historical, climatic contexts and local settings. Preliminary results are presented to show its applicability. METHODS: Eleven sites, representative of various types of land-use changes occurring in marginal agro-ecosystems across Europe and Israel, were selected. Climatic data were obtained at the site level; soil data, disturbance and nutrition indices were described at the plot level within sites. Sixteen traits describing plant stature, leaf characteristics and reproductive phase were recorded on the most abundant species of each treatment. These data were combined with species abundance to calculate trait values weighed by the abundance of species in the communities. The ecosystem properties selected were components of above-ground net primary productivity and decomposition of litter. KEY RESULTS: The wide variety of land-use systems that characterize marginal landscapes across Europe was reflected by the different disturbance indices, and were also reflected in soil and/or nutrient availability gradients. The trait toolkit allowed us to describe adequately the functional response of vegetation to land-use changes, but we suggest that some traits (vegetative plant height, stem dry matter content) should be omitted in studies involving mainly herbaceous species. Using the example of the relationship between leaf dry matter content and above-ground dead material, we demonstrate how the data collected may be used to analyse direct effects of climate and land use on ecosystem properties vs. indirect effects via changes in plant traits. CONCLUSIONS: This work shows the applicability of a set of protocols that can be widely applied to assess the impacts of global change drivers on species, communities and ecosystems.


Assuntos
Ecologia/métodos , Ecossistema , Plantas , Biodiversidade , Clima , Europa (Continente) , Humanos , Israel , Poaceae , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA