Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 14(1): 2214, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072390

RESUMO

Bladder Cancer (BLCa) inter-patient heterogeneity is the primary cause of treatment failure, suggesting that patients could benefit from a more personalized treatment approach. Patient-derived organoids (PDOs) have been successfully used as a functional model for predicting drug response in different cancers. In our study, we establish PDO cultures from different BLCa stages and grades. PDOs preserve the histological and molecular heterogeneity of the parental tumors, including their multiclonal genetic landscapes, and consistently share key genetic alterations, mirroring tumor evolution in longitudinal sampling. Our drug screening pipeline is implemented using PDOs, testing standard-of-care and FDA-approved compounds for other tumors. Integrative analysis of drug response profiles with matched PDO genomic analysis is used to determine enrichment thresholds for candidate markers of therapy response and resistance. Finally, by assessing the clinical history of longitudinally sampled cases, we can determine whether the disease clonal evolution matched with drug response.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Avaliação Pré-Clínica de Medicamentos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Organoides/patologia
2.
Eur Urol Open Sci ; 44: 1-10, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185585

RESUMO

Background: Molecular detection of lymph node (LN) micrometastases by analyzing mRNA expression of epithelial markers in prostate cancer (PC) patients provides higher sensitivity than histopathological examination. Objective: To investigate which type of marker to use and whether molecular detection of micrometastases in LNs was predictive of biochemical recurrence. Design setting and participants: LN samples from PC patients undergoing radical prostatectomy with extended LN dissection between 2009 and 2011 were examined for the presence of micrometastases by both routine histopathology and molecular analyses. Outcome measurements and statistical analysis: The mRNA expression of a panel of markers of prostate epithelial cells, prostate stem cell-like cells, epithelial-to-mesenchymal transition, and stromal activation, was performed by quantitative real-time polymerase chain reaction. The expression levels of these markers in LN metastases from three PC patients were compared with the expression levels in LN from five control patients without PC in order to identify the panel of markers best suited for the molecular detection of LN metastases. The predictive value of the molecular detection of micrometastases for biochemical recurrence was assessed after a follow-up of 10 yr. Results and limitations: Prostate epithelial markers are better suited for the detection of occult LN metastases than molecular markers of stemness, epithelial-to-mesenchymal transition, or reactive stroma. An analysis of 1023 LNs from 60 PC patients for the expression of prostate epithelial cell markers has revealed different expression levels and patterns between patients and between LNs of the same patient. The positive predictive value of molecular detection of occult LN metastasis for biochemical recurrence is 66.7% and the negative predictive value is 62.5%. Limitations are sample size and the hypothesis-driven selection of markers. Conclusions: Molecular detection of epithelial cell markers increases the number of positive LNs and predicts tumor recurrence already at surgery. Patient summary: We show that a panel of epithelial prostate markers rather than single genes is preferred for the molecular detection of lymph node micrometastases not visible at histopathological examination.

3.
Nat Commun ; 12(1): 1117, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602919

RESUMO

Therapy resistance and metastatic processes in prostate cancer (PCa) remain undefined, due to lack of experimental models that mimic different disease stages. We describe an androgen-dependent PCa patient-derived xenograft (PDX) model from treatment-naïve, soft tissue metastasis (PNPCa). RNA and whole-exome sequencing of the PDX tissue and organoids confirmed transcriptomic and genomic similarity to primary tumor. PNPCa harbors BRCA2 and CHD1 somatic mutations, shows an SPOP/FOXA1-like transcriptomic signature and microsatellite instability, which occurs in 3% of advanced PCa and has never been modeled in vivo. Comparison of the treatment-naïve PNPCa with additional metastatic PDXs (BM18, LAPC9), in a medium-throughput organoid screen of FDA-approved compounds, revealed differential drug sensitivities. Multikinase inhibitors (ponatinib, sunitinib, sorafenib) were broadly effective on all PDX- and patient-derived organoids from advanced cases with acquired resistance to standard-of-care compounds. This proof-of-principle study may provide a preclinical tool to screen drug responses to standard-of-care and newly identified, repurposed compounds.


Assuntos
Modelos Biológicos , Organoides/patologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Androgênios/metabolismo , Antineoplásicos/uso terapêutico , Genoma Humano , Humanos , Masculino , Mutação/genética , Metástase Neoplásica , Neoplasias da Próstata/genética , Transcriptoma/genética
5.
Cancers (Basel) ; 12(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334054

RESUMO

Resistance acquisition to androgen deprivation treatment and metastasis progression are a major clinical issue associated with prostate cancer (PCa). The role of stroma during disease progression is insufficiently defined. Using transcriptomic and proteomic analyses on differentially aggressive patient-derived xenografts (PDXs), we investigated whether PCa tumors predispose their microenvironment (stroma) to a metastatic gene expression pattern. RNA sequencing was performed on the PCa PDXs BM18 (castration-sensitive) and LAPC9 (castration-resistant), representing different disease stages. Using organism-specific reference databases, the human-specific transcriptome (tumor) was identified and separated from the mouse-specific transcriptome (stroma). To identify proteomic changes in the tumor (human) versus the stroma (mouse), we performed human/mouse cell separation and subjected protein lysates to quantitative Tandem Mass Tag labeling and mass spectrometry. Tenascin C (TNC) was among the most abundant stromal genes, modulated by androgen levels in vivo and highly expressed in castration-resistant LAPC9 PDX. The tissue microarray of primary PCa samples (n = 210) showed that TNC is a negative prognostic marker of the clinical progression to recurrence or metastasis. Stroma markers of osteoblastic PCa bone metastases seven-up signature were induced in the stroma by the host organism in metastatic xenografts, indicating conserved mechanisms of tumor cells to induce a stromal premetastatic signature. A 50-gene list stroma signature was identified based on androgen-dependent responses, which shows a linear association with the Gleason score, metastasis progression and progression-free survival. Our data show that metastatic PCa PDXs, which differ in androgen sensitivity, trigger differential stroma responses, which show the metastasis risk stratification and prognostic biomarker potential.

6.
Front Oncol ; 10: 1012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656088

RESUMO

Bone metastasis is the leading cause of prostate cancer (PCa) mortality, frequently marking the progression to castration-resistant PCa. Dysregulation of the androgen receptor pathway is a common feature of castration-resistant PCa, frequently appearing in association with mTOR pathway deregulations. Advanced PCa is also characterized by increased tumor heterogeneity and cancer stem cell (CSC) frequency. CSC-targeted therapy is currently being explored in advanced PCa, with the aim of reducing cancer clonal divergence and preventing disease progression. In this study, we compared the molecular pathways enriched in a set of bone metastasis from breast and prostate cancer from snap-frozen tissue. To further model PCa drug resistance mechanisms, we used two patient-derived xenografts (PDX) models of bone-metastatic PCa, BM18, and LAPC9. We developed in vitro organoids assay and ex vivo tumor slice drug assays to investigate the effects of mTOR- and CSC-targeting compounds. We found that both PDXs could be effectively targeted by treatment with the bivalent mTORC1/2 inhibitor Rapalink-1. Exposure of LAPC9 to Rapalink-1 but not to the CSC-targeting drug disulfiram blocked mTORC1/2 signaling, diminished expression of metabolic enzymes involved in glutamine and lipid metabolism and reduced the fraction of CD44+ and ALDEFluorhigh cells, in vitro. Mice treated with Rapalink-1 showed a significantly delayed tumor growth compared to control and cells recovered from the tumors of treated animals showed a marked decrease of CD44 expression. Taken together these results highlight the increased dependence of advanced PCa on the mTOR pathway, supporting the development of a targeted approach for advanced, bone metastatic PCa.

7.
BMC Cancer ; 19(1): 627, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238903

RESUMO

BACKGROUND: Despite latest advances in prostate cancer (PCa) therapy, PCa remains the third-leading cause of cancer-related death in European men. Dysregulation of microRNAs (miRNAs), small non-coding RNA molecules with gene expression regulatory function, has been reported in all types of epithelial and haematological cancers. In particular, miR-221-5p alterations have been reported in PCa. METHODS: miRNA expression data was retrieved from a comprehensive publicly available dataset of 218 PCa patients (GSE21036) and miR-221-5p expression levels were analysed. The functional role of miR-221-5p was characterised in androgen- dependent and androgen- independent PCa cell line models (C4-2 and PC-3M-Pro4 cells) by miR-221-5p overexpression and knock-down experiments. The metastatic potential of highly aggressive PC-3M-Pro4 cells overexpressing miR-221-5p was determined by studying extravasation in a zebrafish model. Finally, the effect of miR-221-5p overexpression on the growth of PC-3M-Pro4luc2 cells in vivo was studied by orthotopic implantation in male Balb/cByJ nude mice and assessment of tumor growth. RESULTS: Analysis of microRNA expression dataset for human primary and metastatic PCa samples and control normal adjacent benign prostate revealed miR-221-5p to be significantly downregulated in PCa compared to normal prostate tissue and in metastasis compared to primary PCa. Our in vitro data suggest that miR-221-5p overexpression reduced PCa cell proliferation and colony formation. Furthermore, miR-221-5p overexpression dramatically reduced migration of PCa cells, which was associated with differential expression of selected EMT markers. The functional changes of miR-221-5p overexpression were reversible by the loss of miR-221-5p levels, indicating that the tumor suppressive effects were specific to miR-221-5p. Additionally, miR-221-5p overexpression significantly reduced PC-3M-Pro4 cell extravasation and metastasis formation in a zebrafish model and decreased tumor burden in an orthotopic mouse model of PCa. CONCLUSIONS: Together these data strongly support a tumor suppressive role of miR-221-5p in the context of PCa and its potential as therapeutic target.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Análise de Variância , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Metástase Neoplásica , Próstata/metabolismo , Transplante Heterólogo , Carga Tumoral , Ensaio Tumoral de Célula-Tronco , Peixe-Zebra
8.
Mol Cancer Res ; 17(5): 1049-1062, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745464

RESUMO

Prostate Cancer is the most common cancer and the second leading cause of cancer-related death in males. When prostate cancer acquires castration resistance, incurable metastases, primarily in the bone, occur. The aim of this study is to test the applicability of targeting melanoma cell adhesion molecule (MCAM; CD146) with a mAb for the treatment of lytic prostate cancer bone metastasis. We evaluated the effect of targeting MCAM using in vivo preclinical bone metastasis models and an in vitro bone niche coculture system. We utilized FACS, cell proliferation assays, and gene expression profiling to study the phenotype and function of MCAM knockdown in vitro and in vivo. To demonstrate the impact of MCAM targeting and therapeutic applicability, we employed an anti-MCAM mAb in vivo. MCAM is elevated in prostate cancer metastases resistant to androgen ablation. Treatment with DHT showed MCAM upregulation upon castration. We investigated the function of MCAM in a direct coculture model of human prostate cancer cells with human osteoblasts and found that there is a reduced influence of human osteoblasts on human prostate cancer cells in which MCAM has been knocked down. Furthermore, we observed a strongly reduced formation of osteolytic lesions upon bone inoculation of MCAM-depleted human prostate cancer cells in animal model of prostate cancer bone metastasis. This phenotype is supported by RNA sequencing (RNA-seq) analysis. Importantly, in vivo administration of an anti-MCAM human mAb reduced the tumor growth and lytic lesions. These results highlight the functional role for MCAM in the development of lytic bone metastasis and suggest that MCAM is a potential therapeutic target in prostate cancer bone metastasis. IMPLICATIONS: This study highlights the functional application of an anti-MCAM mAb to target prostate cancer bone metastasis.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/secundário , Animais , Antineoplásicos Imunológicos/farmacologia , Neoplasias Ósseas/genética , Antígeno CD146/antagonistas & inibidores , Antígeno CD146/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Pathol ; 245(3): 297-310, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29604056

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Despite increasing treatment options for this disease, prognosis remains poor. CRIPTO (TDGF1) protein is expressed at high levels in several human tumours and promotes oncogenic phenotype. Its expression has been correlated to poor prognosis in HCC. In this study, we aimed to elucidate the basis for the effects of CRIPTO in HCC. We investigated CRIPTO expression levels in three cohorts of clinical cirrhotic and HCC specimens. We addressed the role of CRIPTO in hepatic tumourigenesis using Cre-loxP-controlled lentiviral vectors expressing CRIPTO in cell line-derived xenografts. Responses to standard treatments (sorafenib, doxorubicin) were assessed directly on xenograft-derived ex vivo tumour slices. CRIPTO-overexpressing patient-derived xenografts were established and used for ex vivo drug response assays. The effects of sorafenib and doxorubicin treatment in combination with a CRIPTO pathway inhibitor were tested in ex vivo cultures of xenograft models and 3D cultures. CRIPTO protein was found highly expressed in human cirrhosis and hepatocellular carcinoma specimens but not in those of healthy participants. Stable overexpression of CRIPTO in human HepG2 cells caused epithelial-to-mesenchymal transition, increased expression of cancer stem cell markers, and enhanced cell proliferation and migration. HepG2-CRIPTO cells formed tumours when injected into immune-compromised mice, whereas HepG2 cells lacking stable CRIPTO overexpression did not. High-level CRIPTO expression in xenograft models was associated with resistance to sorafenib, which could be modulated using a CRIPTO pathway inhibitor in ex vivo tumour slices. Our data suggest that a subgroup of CRIPTO-expressing HCC patients may benefit from a combinatorial treatment scheme and that sorafenib resistance may be circumvented by inhibition of the CRIPTO pathway. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antibióticos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Chaperona BiP do Retículo Endoplasmático , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/farmacologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
10.
Front Cell Dev Biol ; 5: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259971

RESUMO

Prostate cancer is the second most common cancer in men and lethality is normally associated with the consequences of metastasis rather than the primary tumor. Therefore, targeting the molecular pathways that underlie dissemination of primary tumor cells and the formation of metastases has a great clinical value. Bone morphogenetic proteins (BMPs) play a critical role in tumor progression and this study focuses on the role of BMP9- Activin receptor-Like Kinase 1 and 2 (ALK1 and ALK2) axis in prostate cancer. In order to study the effect of BMP9 in vitro and in vivo on cancer cells and tumor growth, we used a soluble chimeric protein consisting of the ALK1 extracellular domain (ECD) fused to human Fc (ALK1Fc) that prevents binding of BMP9 to its cell surface receptors and thereby blocks its ability to activate downstream signaling. ALK1Fc sequesters BMP9 and the closely related BMP10 while preserving the activation of ALK1 and ALK2 through other ligands. We show that ALK1Fc acts in vitro to decrease BMP9-mediated signaling and proliferation of prostate cancer cells with tumor initiating and metastatic potential. In line with these observations, we demonstrate that ALK1Fc also reduces tumor cell proliferation and tumor growth in vivo in an orthotopic transplantation model, as well as in the human patient derived xenograft BM18. Furthermore, we also provide evidence for crosstalk between BMP9 and NOTCH and find that ALK1Fc inhibits NOTCH signaling in human prostate cancer cells and blocks the induction of the NOTCH target Aldehyde dehydrogenase member ALDH1A1, which is a clinically relevant marker associated with poor survival and advanced-stage prostate cancer. Our study provides the first demonstration that ALK1Fc inhibits prostate cancer progression, identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. Altogether, these findings support the validity of ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.

11.
Prostate ; 68(12): 1307-18, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18512728

RESUMO

BACKGROUND: The aim of this study was to evaluate the inhibitory growth effects of different potential chemopreventive agents in vitro and to determine their influence on PSA mRNA and protein expression with an established screening platform. METHODS: LNCaP and C4-2 cells were incubated with genistein, seleno-L-methionine, lycopene, DL-alpha-tocopherol, and trans-beta-carotene at three different concentrations and cell growth was determined by the MTT assay. PSA mRNA expression was assessed by quantitative real-time RT-PCR and secreted PSA protein levels were quantified by the microparticle enzyme immunoassay. RESULTS: Genistein, seleno-l-methionine and lycopene inhibited LNCaP cell growth, and the proliferation of C4-2 cells was suppressed by seleno-L-methionine and lycopene. PSA mRNA expression was downregulated by genistein in LNCaP but not C4-2 cells. No other compound tested altered PSA mRNA expression. PSA protein expression was downregulated by genistein, seleno-L-methionine, DL-alpha-tocopherol in LNCaP cells. In C4-2 cells only genistein significantly reduced the secretion of PSA protein. CONCLUSIONS: In the LNCaP progression model PSA expression depends on the compound, its concentration and on the hormonal dependence of the cell line used and does not necessarily reflect cell growth or death. Before potential substances are evaluated in clinical trials using PSA as a surrogate end point marker, their effect on PSA mRNA and protein expression has to be considered to correctly assess treatment response by PSA.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Anticarcinógenos/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Adenocarcinoma/prevenção & controle , Biomarcadores Tumorais/metabolismo , Carotenoides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Humanos , Licopeno , Masculino , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/prevenção & controle , RNA Mensageiro/metabolismo , Selenometionina/farmacologia , Vitaminas/farmacologia , alfa-Tocoferol/farmacologia , beta Caroteno/farmacologia
12.
J Urol ; 176(1): 354-60, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16753443

RESUMO

PURPOSE: The antiproliferative effects of pharmacological agents used for androgen ablative therapy in prostate cancer, including goserelin, bicalutamide and cyproterone acetate (Fluka Chemie, Buchs, Switzerland), were tested in vitro. It was determined whether they affected prostate specific antigen mRNA and protein expression independent of growth inhibition. MATERIALS AND METHODS: Goserelin, bicalutamide (AstraZeneca, Zug, Switzerland) and cyproterone acetate were added to prostate specific antigen expressing, androgen dependent LNCaP and androgen independent C4-2 cell line (Urocor, Oklahoma City, Oklahoma) cultures. Proliferation was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay (Roche, Mannheim, Germany). Prostate specific antigen mRNA expression was assessed by quantitative real-time polymerase chain reaction. Secreted prostate specific antigen protein levels were quantified by microparticle enzyme-immunoassay. RESULTS: Goserelin inhibited cell growth and prostate specific antigen protein secretion in LNCaP and C4-2 cells. Prostate specific antigen mRNA expression was not decreased. Bicalutamide did not affect cell growth or prostate specific antigen mRNA expression in LNCaP or C4-2 cells, although it significantly decreased prostate specific antigen protein secretion in LNCaP and to a lesser extent in C4-2 cells. Cyproterone acetate decreased the growth of C4-2 but not of LNCaP cells. It did not affect prostate specific antigen mRNA or protein expression in either cell line. CONCLUSIONS: Prostate specific antigen expression does not necessarily correlate with cell growth. Without a substantial effect on cell growth bicalutamide lowers prostate specific antigen synthesis, whereas cyproterone acetate decreases cell growth with no effect on prostate specific antigen secretion. Prostate specific antigen expression may be influenced by growth inhibition but also by altered mRNA and protein levels depending on the agent, its concentration and the cell line evaluated. For interpreting clinical trials prostate specific antigen is not necessarily a surrogate end point marker for a treatment effect on prostate cancer cell growth.


Assuntos
Antagonistas de Androgênios/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Anilidas/farmacologia , Linhagem Celular Tumoral , Acetato de Ciproterona/farmacologia , DNA Complementar/biossíntese , Gosserrelina/farmacologia , Humanos , Masculino , Nitrilas , Reação em Cadeia da Polimerase , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , Compostos de Tosil
13.
J Urol ; 172(3): 1145-50, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15311059

RESUMO

PURPOSE: We established gene expression profiles by gene array analysis in the LNCaP model of human prostate cancer progression and evaluated genes differentially expressed in the androgen independent and bone metastatic C4-2 cell line compared to the androgen dependent and nonmetastatic parental LNCaP cell line. MATERIALS AND METHODS: Gene expression profiles were generated using Atlas cDNA arrays (Clontech, Palo Alto, California), comprising 1,176 genes. Intrinsic expression of the novel serine/threonine kinase GS3955 in LNCaP, C4-2 and PC-3 prostate cancer cells, and expression when stimulated with growth factors, was monitored by real-time reverse transcriptase-polymerase chain reaction. Furthermore, expression in human tumor specimens was evaluated. Cellular localization of GS3955 protein was analyzed by expressing it as a fusion with green fluorescent protein. RESULTS: Comparable numbers of genes were up-regulated and down-regulated in C4-2 compared to LNCaP. The novel serine/threonine kinase GS3955 was markedly up-regulated (greater than 40-fold) in C4-2, differentially regulated in LNCaP and C4-2 by insulin-like growth factor-1, and variably expressed in human prostate tumor specimens. Moreover, GS3955 was shown to localize in the cell cytoplasm and nucleus. CONCLUSIONS: Differential expression and mitogenic regulation of the serine/threonine kinase GS3955 in LNCaP and C4-2 suggest its functional involvement in the development of androgen independence and/or metastatic potential. GS3955 is also expressed in human prostate cancer specimens and further analysis may provide insights into the biology of prostate cancer progression.


Assuntos
Neoplasias Ósseas/secundário , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Proteínas Serina-Treonina Quinases/genética , Regulação para Cima , Androgênios/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Linhagem Celular Tumoral , Células Cultivadas , Progressão da Doença , Perfilação da Expressão Gênica , Substâncias de Crescimento/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Immunol Methods ; 264(1-2): 173-86, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12191520

RESUMO

Surface molecules exclusively expressed by cells of the bone marrow (BM) are candidate targets for delivering therapeutic agents to this tissue. To identify ligands specific for the BM, we performed a series of pannings in vivo with random peptide phage displayed libraries (RPPDL). We could show that phages bind to bone marrow endothelium (BME) independently of the peptide insert, suggesting that the BM, similarly to spleen and liver, is part of the reticulo-endothelial system (RES). Furthermore, this strong "natural" affinity to the BME was abrogated by polyanions, indicating that phage trapping by this endothelium is mediated by scavenger receptors (SR). To circumvent interference by SR, polyinosinic acid was administered before phage panning in vivo. This led to the identification of a consensus motif that confers binding specificity for a subpopulation of hemopoietic marrow cells. Thus, SR inhibition, by avoiding phage trapping by the endothelium, seems to allow phage particles to extravasate and reach parenchymal cells. Accordingly, this panning strategy in vivo may be useful for the identification of targeting motifs specific for cells located in the extravascular space of various tissues.


Assuntos
Bacteriófago M13/metabolismo , Células da Medula Óssea/metabolismo , Proteínas de Membrana , Biblioteca de Peptídeos , Receptores Imunológicos/antagonistas & inibidores , Receptores de Lipoproteínas , Motivos de Aminoácidos , Animais , Bacteriófago M13/genética , Bacteriófago M13/isolamento & purificação , Células da Medula Óssea/virologia , Linhagem Celular , Injeções Intravenosas , Fígado/metabolismo , Fígado/virologia , Camundongos , Camundongos Endogâmicos BALB C , Sistema Fagocitário Mononuclear/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Poli A/administração & dosagem , Poli A/metabolismo , Poli I/administração & dosagem , Poli I/metabolismo , RNA Mensageiro/biossíntese , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Receptores Depuradores , Receptores Depuradores Classe B , Baço/metabolismo , Baço/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA