Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(26): 22626-22632, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811885

RESUMO

The purity and morphology of the copper surface is important for the synthesis of high-quality, large-grained graphene by chemical vapor deposition. We find that atomically smooth copper foils-fabricated by physical vapor deposition and subsequent electroplating of copper on silicon wafer templates-exhibit strongly reduced surface roughness after the annealing of the copper catalyst, and correspondingly lower nucleation and defect density of the graphene film, when compared to commercial cold-rolled copper foils. The "ultrafoils"-ultraflat foils-facilitate easier dry pickup and encapsulation of graphene by hexagonal boron nitride, which we believe is due to the lower roughness of the catalyst surface promoting a conformal interface and subsequent stronger van der Waals adhesion between graphene and hexagonal boron nitride.

2.
ACS Nano ; 13(2): 2281-2288, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30625274

RESUMO

We study the oxidation of clean suspended mono- and few-layer graphene in real time by in situ environmental transmission electron microscopy. At an oxygen pressure below 0.1 mbar, we observe anisotropic oxidation in which armchair-oriented hexagonal holes are formed with a sharp edge roughness below 1 nm. At a higher pressure, we observe an increasingly isotropic oxidation, eventually leading to irregular holes at a pressure of 6 mbar. In addition, we find that few-layer flakes are stable against oxidation at temperatures up to at least 1000 °C in the absence of impurities and electron-beam-induced defects. These findings show, first, that the oxidation behavior of mono- and few-layer graphene depends critically on the intrinsic roughness, cleanliness and any imposed roughness or additional reactivity from a supporting substrate and, second, that the activation energy for oxidation of pristine suspended few-layer graphene is up to 43% higher than previously reported for graphite. In addition, we have developed a cleaning scheme that results in the near-complete removal of hydrocarbon residues over the entire visible sample area. These results have implications for applications of graphene where edge roughness can critically affect the performance of devices and more generally highlight the surprising (meta)stability of the basal plane of suspended bilayer and thicker graphene toward oxidative environments at high temperature.

3.
J Hazard Mater ; 365: 846-856, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30481735

RESUMO

This study aims to demonstrate a novel method for removing toxic chemicals using soot produced from wood and herbaceous biomass pyrolyzed in a drop tube reactor and tire pyrolytic carbon black. The influence of ash content, nanostructure, particle size, and porosity on the filter efficiency of steam activated carbon materials was studied. It has been shown for the first time that steam activated soot and carbon black can remove phenol and chloride with filter efficiencies as high as 95%. The correlation of filter efficiency to material properties showed that the presence of alkali and steam activation time were the key parameters affecting filter efficiencies. This study shows that steam activated biomass soot and tire carbon black are promising alternatives for the cleaning of wastewater.


Assuntos
Biomassa , Cloro/isolamento & purificação , Fenol/isolamento & purificação , Fuligem/química , Vapor , Águas Residuárias/química
4.
Foot Ankle Int ; 39(8): 935-941, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29682982

RESUMO

BACKGROUND: The purpose of the study was to present a novel operative technique in the management of medial talocalcaneal coalition (TC) and to report our clinical and radiologic results after interposition of a pediculated flap (PF) of the tibialis posterior tendon sheath. METHODS: Twelve feet of 10 patients with a medial TC were treated with the interposition of PF of the tibialis posterior tendon sheath following resection. Pre- and postoperative clinical examinations were performed to evaluate the range of motion and the function of the tibialis posterior muscle of the affected foot. Pain was registered by visual analog scale (VAS) and the function of the foot by the American Orthopaedic Foot & Ankle Society (AOFAS) hindfoot score. The mean follow-up duration was 57.2 months (SD ±37.2 range 12-128) after surgery. Magnetic resonance imaging (MRI) was carried out to assess the outcome. RESULTS: All patients reported a significant reduction of pain ( P = .002) at the final follow-up. The activity level had improved since the operation, and the subtalar joint motion was increased, but no weakness of the tibialis posterior muscle could be observed. The AOFAS hindfoot score was significantly improved ( P = .002). MRI did not reveal any migration of the tibialis posterior tendon sheath, and the interposed PF was confirmed at the resection zone. Furthermore, no TC relapse or ruptures of the functional anatomical structures could be observed. CONCLUSION: The resection combined with the interposition of a PF of the tendon sheath seems to avoid relapse of TC and improves symptoms and the function of the foot. LEVEL OF EVIDENCE: Level IV, case series.


Assuntos
Articulação Talocalcânea/cirurgia , Retalhos Cirúrgicos , Coalizão Tarsal/cirurgia , Adolescente , Calcâneo/anormalidades , Calcâneo/cirurgia , Criança , Feminino , Humanos , Masculino , Procedimentos Ortopédicos/métodos , Tálus/anormalidades , Tálus/cirurgia , Tendões/cirurgia
5.
J Hazard Mater ; 341: 218-227, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28780436

RESUMO

Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm to 31µm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×1010s-1 and the mean mass emission rate was 381µgs-1. The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h-1 for <1µm-size and the deposited particles consisted of mainly TiO2, TiO2 mixed with Cl and/or Ag, TiO2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5µm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization.

6.
ACS Nano ; 11(5): 4483-4493, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28402623

RESUMO

In order to controllably grow single-wall carbon nanotubes (SWCNTs), a better understanding of the growth processes and how they are influenced by external parameters such as catalyst and gaseous environment is required. Here, we present direct evidence of growth termination of individual SWCNTs and successive growth of additional SWCNTs on Co catalyst particles supported on MgO by means of environmental transmission electron microscopy. Such in situ observations reveal the plethora of solid carbon formations at the local scale while it is happening and thereby elucidate the multitude of configurations resulting from identical external synthesis conditions, which should be considered in the quest for controlled SWCNT growth. Using CO and a mixture of CO and H2 as carbon sources, we show that the growth of SWCNTs terminates with a reduced tube-catalyst adhesion strength. Two main reasons for the cessation are proposed: insufficient active carbon species and a certain amount of stress exerted at the tube-catalyst interface. Interestingly, it was observed that catalyst particles stayed active in terms of nucleating additional solid carbon structures after growth termination of the first SWCNT. These observations elucidate the importance of an in-depth understanding of the role of catalysts and carbon sources in the continued growth of SWCNTs. Furthermore, it serves as a guide for further control of carbon nanostructure synthesis via catalyst engineering and synthesis optimization.

7.
Microsc Microanal ; 20(6): 1772-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25390074

RESUMO

A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present work describes a method to automatically estimate the atomic structure in two-dimensional materials. As an example graphene is chosen, in which the positions of the carbon atoms are reconstructed. Lattice parameters are extracted in the frequency domain and an initial atom positioning is estimated. Next, a plausible neighborhood structure is estimated. Finally, atom positions are adjusted by simulation of a Markov random field model, integrating image evidence and the strong geometric prior. A pristine sample with high regularity and a sample with an induced hole are analyzed. False discovery rate-controlled large-scale simultaneous hypothesis testing is used as a statistical framework for interpretation of results. The first sample yields, as expected, a homogeneous distribution of carbon-carbon (C-C) bond lengths. The second sample exhibits regions of shorter C-C bond lengths with a preferred orientation, suggesting either strain in the structure or a buckling of the graphene sheet. The precision of the method is demonstrated on simulated model structures and by its application to multiple exposures of the two graphene samples.

8.
Chem Mater ; 26(22): 6380-6392, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25673919

RESUMO

Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occur isothermally, i.e., at constant elevated temperature, on the Cu surface during exposure to borazine. A Cu lattice expansion during borazine exposure and B precipitation from Cu upon cooling highlight that B is incorporated into the Cu bulk, i.e., that growth is not just surface-mediated. On this basis we suggest that B is taken up in the Cu catalyst while N is not (by relative amounts), indicating element-specific feeding mechanisms including the bulk of the catalyst. We further show that oxygen intercalation readily occurs under as-grown h-BN during ambient air exposure, as is common in further processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i.e., occurs at the catalyst/h-BN interface and depends on the level of oxygen fed to this interface. In turn, however, deliberate feeding of oxygen during h-BN deposition can positively affect control over film morphology. We discuss the implications of these observations in the context of corrosion protection and relate them to challenges in process integration and heterostructure CVD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA