Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(29): eadg0686, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467333

RESUMO

The gelatinases, matrix metalloproteinase 2 (MMP-2) and MMP-9, are key for leukocyte penetration of the brain parenchymal border in neuroinflammation and the functional integrity of this barrier; however, it is unclear which MMP substrates are involved. Using a tailored, sensitive, label-free mass spectrometry-based secretome approach, not previously applied to nonimmune cells, we identified 119 MMP-9 and 21 MMP-2 potential substrates at the cell surface of primary astrocytes, including known substrates (ß-dystroglycan) and a broad spectrum of previously unknown MMP-dependent events involved in cell-cell and cell-matrix interactions. Using neuroinflammation as a model of assessing compromised astroglial barrier function, a selection of the potential MMP substrates were confirmed in vivo and verified in human samples, including vascular cell adhesion molecule-1 and neuronal cell adhesion molecule. We provide a unique resource of potential MMP-2/MMP-9 substrates specific for the astroglia barrier. Our data support a role for the gelatinases in the formation and maintenance of this barrier but also in astrocyte-neuron interactions.


Assuntos
Gelatinases , Metaloproteinase 2 da Matriz , Humanos , Gelatinases/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Barreira Hematoencefálica/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias
3.
EMBO J ; 36(2): 183-201, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27940654

RESUMO

Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin ß1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that ß1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.


Assuntos
Membrana Basal/fisiologia , Endotélio Vascular/fisiologia , Laminina/metabolismo , Estresse Mecânico , Estresse Fisiológico , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA