Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chempluschem ; 89(6): e202300739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346095

RESUMO

Urea electrolysis is an emerging approach to treating urea-enriched wastewater and an attractive alternative anodic process to the oxygen evolution reaction (OER) in electrochemical clean energy conversion and storage technologies (e. g., hydrogen production and CO2 electroreduction). While the thermodynamic potential for urea oxidation to dinitrogen is quite low compared to that of the OER, the catalysts reported to date require high overpotentials that far exceed those for the OER. Consequently, there is much room for improvement and rational catalyst design for the urea oxidation reaction (UOR). At the same time, due to the urea molecule having a more complex structure than water, UOR can lead to the formation of various products beyond the commonly assumed N2 and CO2. This concept article will critically assess recent efforts of the research community to decipher the formation mechanisms of UOR products focusing on the systematic analysis of the reaction selectivity. This work aims to analyze the current state of the art and identify existing gaps, providing an outlook for the future design of UOR catalysts with superior activity and selectivity by applying the knowledge of the molecular transformation mechanisms.

2.
Chemphyschem ; 25(8): e202300889, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38316612

RESUMO

Developing electrocatalysts for urea oxidation reaction (UOR) works toward sustainably treating urea-enriched water. Without a clear understanding of how UOR products form, advancing catalyst performance is currently hindered. This work examines the thermodynamics of UOR pathways to produce N2, NO2 -, and NO3 - on a (0001) ß-Ni(OH)2 surface using density functional theory with the computational hydrogen electrode model. Our calculations show support for two major experimental observations: (1) N2 favours an intramolecular mechanism, and (2) NO2 -/NO3 - are formed in a 1 : 1 ratio with OCN-. In addition, we found that selectivity between N2 and NO2 -/NO3 - on our model surface appears to be controlled by two key factors, the atom that binds the surface intermediates to the surface and how they are deprotonated. These UOR pathways were also examined with a Cu dopant, revealing that an experimentally observed increased N2 selectivity may originate from increasing the limiting potential required to form NO2 -. This work builds towards developing a more complete atomic understanding of UOR at the surface of NiOxHy electrocatalysts.

3.
Nanoscale ; 15(11): 5181-5187, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722922

RESUMO

Expanding our understanding of the structure-performance relationship in nanoscale electrocatalysts for urea electrolysis is crucial for efficient urea waste treatment and concomitant cathodic hydrogen production or CO2 reduction. Here, we elucidate the effect of the lattice strain in Pd-Ni core-shell nanocubes on the dominance of urea overoxidation pathway.

4.
Phys Chem Chem Phys ; 24(42): 25695-25719, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36214354

RESUMO

The electrocatalytic performance of nanostructured heterogeneous electrocatalysts can be tailored by adjusting their geometries due to the morphologically dependent physicochemical effects, such as field-induced reagent concentration near high-curvature nanoscale features and the confinement of reaction intermediates in a nanocavity. However, the theoretical studies on these physicochemical effects in various nanoscale structures are considerably less common in comparison to the density functional theory calculations on the atomic structure design due to the absence of consistent simulation protocols in this area. This tutorial review presents the theory, models, and protocols for the simulation of the electrochemical properties of nanoelectrocatalysts with complex morphologies using the finite element method (FEM), including the local electric field (E-field) and the current density in the electrolyte adjacent to the electrode (Jelectrolyte) and in the electrode (Jelectrode). In the E-field simulation, we demonstrate the significant screening effect of the EDL on the E-field distribution as well as the influence of the relative permittivity of the electrolyte on the screening strength. In the Jelectrolyte simulation, we illustrate the impact of the electrode kinetics on the electron transfer, which can significantly affect the Jelectrolyte profile. In the Jelectrode simulation, we reveal that the Jelectrode crowding can occur in constricted areas of nanostructures, which would cause the structural transformation via electromigration. Finally, we discuss the applicability and limitations of the theoretical models discussed in this tutorial, suggesting the focus of future work to develop advanced multiscale modelling approaches. We hope this tutorial will assist electrochemists in navigating how to conduct accurate electrochemical physics effect simulations for analyzing the catalytic performance of nanoelectrocatalysts and thereby contribute to a wider adoption of FEM simulations in the rational design of advanced electrocatalysts.

5.
Phys Chem Chem Phys ; 24(32): 19432-19442, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35920756

RESUMO

Improving the activity and selectivity of heterogeneous metal electrocatalysts has been the primary focus of CO2 electroreduction studies, however, the stability of these materials crucial for practical application remains less understood. In our work, the impact of the reaction intermediates (RIs) on the energetics and mechanism of metal-atom migration is studied with a combination of density functional theory (DFT) and ab initio molecular dynamics (AIMD) on pure transition metals Cu, Ag, Au, Pd, as well as three Cu4-xPdx (x = 1,2, and 3) alloys. Reaction intermediates (RIs) for the CO2 reduction reaction, H2 evolution, and O2 reduction were considered. The effect of adsorbed RIs was observed to facilitate metal atom migration generally by decreasing the kinetic barriers for migration. The atomic mobility trends in the commonly used CO2RR metal electrocatalysts in the course of electrolysis conditions were established. This study provides theoretical insight into understanding how the electrocatalyst may undergo promoted restructuring in the presence of RIs under realistic electrochemical conditions.

6.
Angew Chem Int Ed Engl ; 61(39): e202209839, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35931655

RESUMO

The electrochemical urea oxidation reaction (UOR) to N2 represents an efficient route to simultaneous nitrogen removal from N-enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NOx - usually dominates over its oxidation to N2 at Ni(OH)2 -based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design. We found that UOR to NOx - on Ni(OH)2 is accompanied by the formation of near stoichiometric amount of cyanate (NCO- ), which enabled the elucidation of UOR mechanisms. Based on our experimental and computational findings, we show that the formation of NOx - and N2 follows two distinct vacancy-dependent pathways. We also demonstrate that the reaction selectivity can be steered towards N2 formation by altering the composition of the catalyst, e.g., doping the catalyst with copper (Ni0.8 Cu0.2 (OH)2 ) increases the faradaic efficiency of N2 from 30 % to 55 %.


Assuntos
Níquel , Nitritos , Catálise , Cobre/química , Cianatos , Eletrólise , Níquel/química , Nitrogênio/química , Ureia
7.
Nano Lett ; 22(13): 5365-5371, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35699569

RESUMO

Time-resolved optical measurements of vibrating metal nanoparticles have been used extensively to probe the ultrafast mechanical properties of the nanoparticles and of the surrounding liquid, but nearly all investigations so far have been limited to the linear regime. Here, we report the observation of a low-frequency oscillating signal in transient-absorption measurements of nanoparticles with octahedral gold cores and cubic silver shells; the signal appears at the difference of two mechanical vibrational frequencies in the particles, suggesting a nonlinear mixing process. We tentatively attribute this proposed mixing to a nonlinear coupling between a vibrational mode of the nanoparticle and its optical-frequency plasmon resonance. The optimization of this nonlinear transduction may enable high-efficiency opto-mechanical frequency mixing in the GHz-THz frequency regime.


Assuntos
Nanopartículas Metálicas , Vibração , Ouro
8.
Nanotechnology ; 33(12)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34852331

RESUMO

Chiral linear assemblies of plasmonic nanoparticles with chiral optical activity often show low asymmetry factors. Systematic understanding of the structure-property relationship in these systems must be improved to facilitate rational design of their chiroptical response. Here we study the effect of large area interparticle gaps in chiral linear nanoparticle assemblies on their chiroptical properties using a tetrahelix structure formed by a linear face-to-face assembly of nanoscale Au tetrahedra. Using finite-difference time-domain and finite element methods, we performed in-depth evaluation of the extinction spectra and electric field distribution in the tetrahelix structure and its dependence on various geometric parameters. The reported structure supports various plasmonic modes, one of which shows a strong incident light handedness selectivity that is associated with large face-to-face junctions. This works highlights the importance of gap engineering in chiral plasmonic assemblies to achieveg-factors greater than 1 and produce structures with a handedness-selective optical response.

9.
Nanoscale ; 13(29): 12505-12512, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231611

RESUMO

Shape and surface chemistry control in copper nanoparticle synthesis is an important research area due to a wide range of developing applications of this material in catalysis, energy conversion, sensing and many others. In addition to being an inexpensive and abundant metal, copper is an attractive photocatalyst due to its optical properties in the visible range. Here, we report a facile, tunable and sustainable methodology for synthesizing Pd-seeded Cu nanoparticles with various shapes, including cubes, spheres, raspberry-like particles and cages stabilized with a bilayer of a cationic surfactant in aqueous media. The experimental and theoretical examination of the optical response in the series of synthesized nanoparticles revealed that the low-energy extinction peak is associated with electronic interband transitions in the metal, in contrast to a widely spread attribution of this peak to a plasmonic response in Cu nanoparticles.

10.
Chemosphere ; 279: 130550, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134403

RESUMO

Electrochemical oxidation of urea provides an approach to prevent excess urea emissions into the environment while generating value by capturing chemical energy from waste. Unfortunately, the source of high catalytic activity in state-of-the-art doped nickel catalysts for urea oxidation reaction (UOR) activity remains poorly understood, hindering the rational design of new catalyst materials. In particular, the exact role of cobalt as a dopant in Ni(OH)2 to maximize the intrinsic activity towards UOR remains unclear. In this work, we demonstrate how tuning the Ni:Co ratio allows us to control the intrinsic activity and number of active surface sites, both of which contribute towards increasing UOR performance. We show how Ni90Co10(OH)2 achieves the largest geometric current density due to the increase of available surface sites and that intrinsic activity towards UOR is maximized with Ni20Co80(OH)2. Through density functional theory calculations, we show that the introduction of Co alters the Ni 3d electronic state density distribution to lower the minimum energy required to oxidize Ni and influence potential surface adsorbate interactions.


Assuntos
Níquel , Ureia , Cobalto , Eletrônica , Hidróxidos
11.
Nanomaterials (Basel) ; 9(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614618

RESUMO

Shape-specific copper oxide nanostructures have attracted increasing attention due to their widespread applications in energy conversion, sensing, and catalysis. Advancing our understanding of structure, composition, and surface chemistry transformations in shaped copper oxide nanomaterials during changes in copper oxidation state is instrumental from both applications and preparative nanochemistry standpoints. Here, we report the study of structural and compositional evolution of amorphous copper (II) hydroxide nanoparticles under hydrazine reduction conditions that resulted in the formation of crystalline Cu2O and composite Cu2O-N2H4 branched particles. The structure of the latter was influenced by the solvent medium. We showed that hydrazine, while being a common reducing agent in nanochemistry, can not only reduce the metal ions but also coordinate to them as a bidentate ligand and thereby integrate within the lattice of a particle. In addition to shape and composition transformation of individual particles, concurrent interparticle attachment and ensemble shape evolution were induced by depleting surface stabilization of individual nanoparticles. Not only does this study provide a facile synthetic method for several copper (I) oxide structures, it also demonstrates the complex behavior of a reducing agent with multidentate coordinating ability in nanoparticle synthesis.

12.
J Phys Chem Lett ; 10(19): 5742-5747, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498643

RESUMO

Multiply charged anions (MCAs) display unique photophysics and solvent-stabilizing effects. Well-known aqueous species such as SO42- and PO43- experience spontaneous electron detachment or charge-separation fragmentation in the gas phase owing to the strong Coulomb repulsion arising from the excess of negative charge. Thus, anions often present low photodetachment thresholds and the ability to quickly eject electrons into the solvent via charge-transfer-to-solvent (CTTS) states. Here, we report spectroscopic evidence for the existence of a repulsive Coulomb barrier (RCB) that blocks the ejection of "CTTS-like" electrons of the aqueous B12F122- dianion. Our spectroscopic experimental and theoretical studies indicate that despite the exerted Coulomb repulsion by the nascent radical monoanion B12F12-•aq, the photoexcited electron remains about the B12F12-• core. The RCB is an established feature of the potential energy landscape of MCAs in vacuo, which seems to extend to the liquid phase highlighting recent observations about the dielectric behavior of confined water.

13.
Chem Commun (Camb) ; 55(72): 10733-10736, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31432063

RESUMO

High energy density and low toxicity of formic acid makes it a promising hydrogen energy carrier. Here we report a Pd/CNT-based formic acid dehydrogenation catalyst that shows a significant decrease in the apparent activation energy compared to benchmark Pd catalysts and provide a mechanistic insight into its catalytic performance.

14.
Phys Chem Chem Phys ; 21(11): 5894-5897, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30742164

RESUMO

Uncovering the nature and formation mechanisms of active sites in electrocatalysts is crucial for advancing energy conversion technologies. Cu(ii)-derived electrodes show unique activity in CO2 electroreduction, but its origins are not fully understood. We investigate the structural evolution of Cu(OH)2 nanoparticle-derived electrodes and its effect on their performance in CO2 electroreduction.

15.
Nanoscale ; 11(7): 3138-3144, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30715071

RESUMO

Plasmonic metal nanostructures with complex morphologies provide an important route to tunable optical responses and local electric field enhancement at the nanoscale for a variety of applications including sensing, imaging, and catalysis. Here we report a high-concentration synthesis of gold core-cage nanoparticles with a tethered and structurally aligned octahedral core and examine their plasmonic and catalytic properties. The obtained nanostructures exhibit a double band extinction in the visible-near infrared range and a large area electric field enhancement due to the unique structural features, as demonstrated using finite difference time domain (FDTD) simulations and confirmed experimentally using surface enhanced Raman scattering (SERS) tests. In addition, the obtained structures had a photoelectrochemical response useful for catalyzing the CO2 electroreduction reaction. Our work demonstrates the next generation of complex plasmonic nanostructures attainable via bottom-up synthesis and offers a variety of potential applications ranging from sensing to catalysis.

16.
Macromol Rapid Commun ; 39(3)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29144010

RESUMO

Chemical and topographic surface patterning of inorganic polymer-functionalized nanoparticles (NPs) and their self-assembly in nanostructures with controllable architectures enable the design of new NP-based materials. Capping of NPs with inorganic polymer ligands, such as metallopolymers, can lead to new synergetic properties of individual NPs or their assemblies, and enhance NP processing in functional materials. Here, for gold NPs functionalized with polyferrocenylsilane, two distinct triggers are used to induce attraction between the polymer ligands and achieve NP self-assembly or topographic surface patterning of individual polymer-capped NPs. Control of polymer-solvent interactions is achieved by either changing the solvent composition or by the electrooxidation of polyferrocenylsilane ligands. These results expand the range of polymer ligands used for NP assembly and patterning, and can be used to explore new self-assembly modalities. The utilization of electrochemical polymer oxidation stimuli at easily accessible potentials broadens the range of stimuli leading to NP self-assembly and patterning.


Assuntos
Compostos Ferrosos/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Silanos/química , Técnicas Eletroquímicas , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotecnologia/métodos , Solventes/química , Propriedades de Superfície
17.
Biochem Cell Biol ; 95(2): 280-288, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28177768

RESUMO

Alcohol consumption affects the human immune system, causing a variety of disorders. However, the mechanisms of development of these changes are not fully understood. We hypothesized that ethanol may influence the expression of MICA and MICB, stress-induced molecules capable of regulating the activity of cytotoxic lymphocytes through the interaction with receptor NKG2D, which substantially affects the functionality of cellular immunity. We analyzed the effects of ethanol on MICA/B expression in tumor cell lines and human leukocytes. In the cell line models, ethanol caused different changes in the surface expression of MICA/B; in particular, it induced the translocation of intracellular proteins MICA/B to the cell surface and shedding of MICA (in soluble and microparticle-associated forms) from the plasma membrane. The observed results are not linked with cell death in cultures, taking place only under higher doses of ethanol. Ethanol at physiologically relevant concentrations (and higher) stimulated expression of MICA/B genes in different cell types. The effect of ethanol was more pronounced in hepatocyte line HepG2 compared with hematopoietic cell lines K562, Jurkat, and THP-1. Among the tested leukocytes, the most sensitive to ethanol action were T cells activated ex vivo with IL-2, in which the increase of MICA/B mRNA expression was registered with the smallest dose of ethanol (0.125%). In human monocytes, ethanol may lead to elevations in surface MICA/B levels. Presumably, changes in MICA/B expression caused by ethanol can affect the functions of NKG2D-positive cytotoxic lymphocytes, modulating immune reactions at excessive alcohol consumption.


Assuntos
Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Leucócitos Mononucleares/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Relação Dose-Resposta a Droga , Etanol/farmacologia , Células Hep G2 , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Jurkat , Células K562 , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Especificidade de Órgãos , Cultura Primária de Células , Transdução de Sinais
18.
Nature ; 538(7623): 79-83, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27556943

RESUMO

Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as 'colloidal surfactants' and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a 'raspberry' surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

19.
Nat Commun ; 7: 12520, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561545

RESUMO

The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

20.
Nature ; 537(7620): 382-386, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27487220

RESUMO

Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA