Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38836331

RESUMO

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Assuntos
Encéfalo , Exposição por Inalação , Ratos Wistar , Tungstênio , Animais , Tungstênio/toxicidade , Masculino , Exposição por Inalação/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Biomarcadores/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
Int J Radiat Biol ; : 1-14, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180060

RESUMO

PURPOSE: The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects. It primarily focuses on animal studies involving in utero exposure and discusses crucial elements for interpreting the results. These elements include in utero exposure scenarios relative to the developmental stages of the embryo/fetus, and the primary biological mechanisms responsible for transmitting heritable or hereditary effects to future generations. The review addresses several issues within the contexts of both multigenerational and transgenerational effects, with a focus on hereditary perspectives. CONCLUSIONS: Knowledge consolidation in the field of Developmental Origins of Health and Disease (DOHaD) has led us to propose a new study strategy. This strategy aims to address the transgenerational effects of in utero exposure to low dose and low dose-rate radiation. Within this concept, there is a possibility that disruption of epigenetic programming in embryonic and fetal cells may occur. This disruption could lead to metabolic dysfunction, which in turn may cause abnormal responses to future environmental challenges, consequently increasing disease risk. Lastly, we discuss methodological limitations in our studies. These limitations are related to cohort size, follow-up time, model radiosensitivity, and analytical techniques. We propose scientific and analytical strategies for future research in this field.

3.
J Radiol Prot ; 43(2)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37339605

RESUMO

The linear no-threshold (LNT) model was introduced into the radiological protection system about 60 years ago, but this model and its use in radiation protection are still debated today. This article presents an overview of results on effects of exposure to low linear-energy-transfer radiation in radiobiology and epidemiology accumulated over the last decade and discusses their impact on the use of the LNT model in the assessment of radiation-related cancer risks at low doses. The knowledge acquired over the past 10 years, both in radiobiology and epidemiology, has reinforced scientific knowledge about cancer risks at low doses. In radiobiology, although certain mechanisms do not support linearity, the early stages of carcinogenesis comprised of mutational events, which are assumed to play a key role in carcinogenesis, show linear responses to doses from as low as 10 mGy. The impact of non-mutational mechanisms on the risk of radiation-related cancer at low doses is currently difficult to assess. In epidemiology, the results show excess cancer risks at dose levels of 100 mGy or less. While some recent results indicate non-linear dose relationships for some cancers, overall, the LNT model does not substantially overestimate the risks at low doses. Recent results, in radiobiology or in epidemiology, suggest that a dose threshold, if any, could not be greater than a few tens of mGy. The scientific knowledge currently available does not contradict the use of the LNT model for the assessment of radiation-related cancer risks within the radiological protection system, and no other dose-risk relationship seems more appropriate for radiological protection purposes.


Assuntos
Neoplasias Induzidas por Radiação , Proteção Radiológica , Humanos , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Induzidas por Radiação/epidemiologia , Modelos Lineares , Radiobiologia , Carcinogênese , Relação Dose-Resposta à Radiação , Medição de Risco/métodos
4.
Front Artif Intell ; 6: 1291136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282906

RESUMO

While AI is widely used in biomedical research and medical practice, its use is constrained to few specific practical areas, e.g., radiomics. Participants of the workshop on "Artificial Intelligence in Biology and Medicine" (Jerusalem, Feb 14-15, 2023), both researchers and practitioners, aimed to build a holistic picture by exploring AI advancements, challenges and perspectives, as well as to suggest new fields for AI applications. Presentations showcased the potential of large language models (LLMs) in generating molecular structures, predicting protein-ligand interactions, and promoting democratization of AI development. Ethical concerns in medical decision making were also addressed. In biological applications, AI integration of multi-omics and clinical data elucidated the health relevant effects of low doses of ionizing radiation. Bayesian latent modeling identified statistical associations between unobserved variables. Medical applications highlighted liquid biopsy methods for non-invasive diagnostics, routine laboratory tests to identify overlooked illnesses, and AI's role in oral and maxillofacial imaging. Explainable AI and diverse image processing tools improved diagnostics, while text classification detected anorexic behavior in blog posts. The workshop fostered knowledge sharing, discussions, and emphasized the need for further AI development in radioprotection research in support of emerging public health issues. The organizers plan to continue the initiative as an annual event, promoting collaboration and addressing issues and perspectives in AI applications with a focus on low-dose radioprotection research. Researchers involved in radioprotection research and experts in relevant public policy domains are invited to explore the utility of AI in low-dose radiation research at the next workshop.

5.
Sci Rep ; 12(1): 16209, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171442

RESUMO

Many studies on ionizing radiation (IR) exposure during childhood have shown deleterious effects on the central nervous system (CNS), however results regarding adult exposure are inconsistent, and no systematic reviews have been performed. The objectives are to synthesize the findings and draw evidence-based conclusions from epidemiological studies on the risk of benign and malignant brain and CNS tumors in humans exposed to low-to-moderate doses (< 0.5 Gy) of IR during adulthood/young adulthood. A systematic literature search of four electronic databases, supplemented by a hand search, was performed to retrieve relevant epidemiological studies published from 2000 to 2022. Pooled excess relative risk (ERRpooled) was estimated using a random effect model. Eighteen publications were included in the systematic review and twelve out of them were included in a meta-analysis. The following IR sources were considered: atomic bombs, occupational, and environmental exposures. No significant dose-risk association was found for brain/CNS tumors (ERRpooled at 100 mGy = - 0.01; 95% CI: - 0.05, 0.04). Our systematic review and meta-analysis did not show any association between exposure to low-to-moderate doses of IR and risk of CNS tumors. Further studies with histological information and precise dose assessment are needed.


Assuntos
Neoplasias do Sistema Nervoso Central , Armas Nucleares , Exposição Ocupacional , Exposição à Radiação , Adulto , Neoplasias do Sistema Nervoso Central/epidemiologia , Neoplasias do Sistema Nervoso Central/etiologia , Exposição Ambiental , Humanos , Exposição Ocupacional/efeitos adversos , Exposição à Radiação/efeitos adversos , Radiação Ionizante , Adulto Jovem
6.
Int J Radiat Biol ; 98(12): 1763-1776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067511

RESUMO

PURPOSE: The Adverse Outcome Pathway (AOP) framework, a systematic tool that can link available mechanistic data with phenotypic outcomes of relevance to regulatory decision-making, is being explored in areas related to radiation risk assessment. To examine the challenges including the use of AOPs to support the radiation protection community, an international horizon-style exercise was initiated through the Organisation for Economic Co-operation and Development Nuclear Energy Agency High-Level Group on Low Dose Research Radiation/Chemical AOP Joint Topical Group. The objective of the HSE was to facilitate the collection of ideas from a range of experts, to short-list a set of priority research questions that could, if answered, improve the description of the radiation dose-response relationship for low dose/dose-rate exposures, as well as reduce uncertainties in estimating the risk of developing adverse health outcomes following such exposures. MATERIALS AND METHODS: The HSE was guided by an international steering committee of radiation risk experts. In the first phase, research questions were solicited on areas that can be supported by the AOP framework, or challenges on the use of AOPs in radiation risk assessment. In the second phase, questions received were refined and sorted by the SC using a best-worst scaling method. During a virtual 3-day workshop, the list of questions was further narrowed. In the third phase, an international survey of the broader radiation protection community led to an orderly ranking of the top questions. RESULTS: Of the 271 questions solicited, 254 were accepted and categorized into 9 themes. These were further refined to the top 25 prioritized questions. Among these, the higher ranked questions will be considered as 'important' to drive future initiatives in the low dose radiation protection community. These included questions on the ability of AOPs to delineate responses across different levels of biological organization, and how AOPs could be applied to address research questions on radiation quality, doses or dose-rates, exposure time patterns and deliveries, and uncertainties in low dose/dose-rate effects. A better understanding of these concepts is required to support the use of the AOP framework in radiation risk assessment. CONCLUSION: Through dissemination of these results and considerations on next steps, the JTG will address select priority questions to advance the development and use of AOPs in the radiation protection community. The major themes observed will be discussed in the context of their relevance to areas of research that support the system of radiation protection.


Assuntos
Rotas de Resultados Adversos , Proteção Radiológica , Medição de Risco/métodos , Projetos de Pesquisa , Inquéritos e Questionários
7.
Int J Radiat Biol ; 98(12): 1802-1815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040845

RESUMO

PURPOSE: The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome. Further knowledge review to generate a weight of evidence support for the Key Event Relationships (KERs) was undertaken using a systematic review approach. CONCLUSIONS: An AOP for IR-induced acute myeloid leukemia was proposed and submitted for review to the OECD-curated AOP-wiki (aopwiki.org). The systematic review identified over 500 studies that link IR, as a stressor, to leukemia, as an adverse outcome. Knowledge gap identification, although requiring a substantial effort via systematic review of literature, appears to be one of the major added values of the AOP concept. Further work, both within this leukemia AOP working group and other similar working groups, is warranted and is anticipated to produce highly demanded products for the radiation protection research community.


Assuntos
Rotas de Resultados Adversos , Leucemia Induzida por Radiação , Proteção Radiológica , Humanos
8.
Brain Sci ; 12(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892428

RESUMO

Background: High-dose ionizing radiation (IR) (>0.5 Gy) is an established risk factor for cognitive impairments, but this cannot be concluded for low-to-moderate IR exposure (<0.5 Gy) in adulthood as study results are inconsistent. The objectives are to summarize relevant epidemiological studies of low-to-moderate IR exposure in adulthood and to assess the risk of non-cancerous CNS diseases. Methods: A systematic literature search of four electronic databases was performed to retrieve relevant epidemiological studies published from 2000 to 2022. Pooled standardized mortality ratios, relative risks, and excess relative risks (ERR) were estimated with a random effect model. Results: Forty-five publications were included in the systematic review, including thirty-three in the quantitative meta-analysis. The following sources of IR-exposure were considered: atomic bomb, occupational, environmental, and medical exposure. Increased dose-risk relationships were found for cerebrovascular diseases incidence and mortality (ERRpooled per 100 mGy = 0.04; 95% CI: 0.03−0.05; ERRpooled at 100 mGy = 0.01; 95% CI: −0.00−0.02, respectively) and for Parkinson's disease (ERRpooled at 100 mGy = 0.11; 95% CI: 0.06−0.16); Conclusions: Our findings suggest that adult low-to-moderate IR exposure may have effects on non-cancerous CNS diseases. Further research addressing inherent variation issues is encouraged.

9.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299125

RESUMO

Medical staff represent the largest group of workers occupationally exposed to ionizing radiation (IR). Chronic exposure to low-dose IR may result in DNA damage and genotoxicity associated with increased risk of cancer. This review aims to identify the genotoxicity biomarkers that are the most elevated in IR-exposed vs. unexposed health workers. A systematic review of the literature was performed to retrieve relevant studies with various biomarkers of genotoxicity. Subsequent meta-analyses produced a pooled effect size for several endpoints. The search procedure yielded 65 studies. Chromosome aberrations (CA) and micronuclei (MN) frequencies were significantly different between IR-exposed and unexposed workers (θpooled = 3.19, 95% CI 1.46-4.93; and θpooled = 1.41, 95% CI 0.97-1.86, for total aberrant cells and MN frequencies, respectively), which was not the case for ring chromosomes and nucleoplasmic bridges. Although less frequently used, stable translocations, sister chromatid exchanges (SCE) and comet assay endpoints were also statistically different between IR-exposed and unexposed workers. This review confirms the relevance of CA and MN as genotoxicity biomarkers that are consistently elevated in IR-exposed vs. unexposed workers. Other endpoints are strong candidates but require further studies to validate their usefulness. The integration of the identified biomarkers in future prospective epidemiological studies is encouraged.


Assuntos
Biomarcadores/análise , Aberrações Cromossômicas/efeitos da radiação , Dano ao DNA , Pessoal de Saúde/estatística & dados numéricos , Exposição Ocupacional/análise , Radiação Ionizante , Relação Dose-Resposta à Radiação , Humanos , Exposição Ocupacional/efeitos adversos
10.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932812

RESUMO

Protein synthesis, or mRNA translation, is one of the most energy-consuming functions in cells. Translation of mRNA into proteins is thus highly regulated by and integrated with upstream and downstream signaling pathways, dependent on various transacting proteins and cis-acting elements within the substrate mRNAs. Under conditions of stress, such as exposure to ionizing radiation, regulatory mechanisms reprogram protein synthesis to translate mRNAs encoding proteins that ensure proper cellular responses. Interestingly, beneficial responses to low-dose radiation exposure, known as radiation hormesis, have been described in several models, but the molecular mechanisms behind this phenomenon are largely unknown. In this review, we explore how differences in cellular responses to high- vs. low-dose ionizing radiation are realized through the modulation of molecular pathways with a particular emphasis on the regulation of mRNA translation control.


Assuntos
Hormese/genética , Biossíntese de Proteínas/genética , Animais , Humanos , RNA Mensageiro/genética , Radiação Ionizante , Transdução de Sinais/genética
11.
Front Genet ; 11: 855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849834

RESUMO

Molecular responses to genotoxic stress, such as ionizing radiation, are intricately complex and involve hundreds of genes. Whether targeted overexpression of an endogenous gene can enhance resistance to ionizing radiation remains to be explored. In the present study we take an advantage of the CRISPR/dCas9 technology to moderately overexpress the RPA1 gene that encodes a key functional subunit of the replication protein A (RPA). RPA is a highly conserved heterotrimeric single-stranded DNA-binding protein complex involved in DNA replication, recombination, and repair. Dysfunction of RPA1 is detrimental for cells and organisms and can lead to diminished resistance to many stress factors. We demonstrate that HEK293T cells overexpressing RPA1 exhibit enhanced resistance to cell killing by gamma-radiation. Using the alkali comet assay, we show a remarkable acceleration of DNA breaks rejoining after gamma-irradiation in RPA1 overexpressing cells. However, the spontaneous rate of DNA damage was also higher in the presence of RPA1 overexpression, suggesting alterations in the processing of replication errors due to elevated activity of the RPA protein. Additionally, the analysis of the distributions of cells with different levels of DNA damage showed a link between the RPA1 overexpression and the kinetics of DNA repair within differentially damaged cell subpopulations. Our results provide knew knowledge on DNA damage stress responses and indicate that the concept of enhancing radioresistance by targeted alteration of the expression of a single gene is feasible, however undesired consequences should be considered and evaluated.

13.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146367

RESUMO

DNA double-strand breaks (DSB) are among the most harmful DNA lesions induced by ionizing radiation (IR). Although the induction and repair of radiation-induced DSB is well studied for acute irradiation, responses to DSB produced by chronic IR exposures are poorly understood, especially in human stem cells. The aim of this study was to examine the formation of DSB markers (γH2AX and phosphorylated kinase ATM, pATM, foci) in human mesenchymal stem cells (MSCs) exposed to chronic gamma-radiation (0.1 mGy/min) in comparison with acute irradiation (30 mGy/min) at cumulative doses of 30, 100, 160, 240 and 300 mGy. A linear dose-dependent increase in the number of both γH2AX and pATM foci, as well as co-localized γH2AX/pATM foci ("true" DSB), were observed after an acute radiation exposure. In contrast, the response of MSCs to a chronic low dose-rate IR exposure deviated from linearity towards a threshold model, for γH2AX, pATM foci and γH2AX/pATM foci, with an indication of a "plateau". The state of equilibrium between newly formed DSB at a low rate during the protracted exposure time and the elimination of a fraction of DSB is proposed as a mechanistic explanation of the non-linear DSB responses following a low dose-rate irradiation. This notion is supported by the observation of the elimination of a substantial fraction of DSB 6 h after the cessation of the exposures. Our results demonstrate non-linear dose responses for γH2AX and pATM foci in human MSCs exposed to low dose-rate IR and showed the existence of a threshold, which may have implications for radiation protection in humans.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Raios gama , Histonas/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Humanos , Células-Tronco Mesenquimais/metabolismo
14.
Int J Radiat Biol ; 95(10): 1404-1413, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30676169

RESUMO

Purpose: Humans are exposed to both natural (e.g. soil, cosmic rays) and human-made radiation sources (e.g. medical devices, nuclear energy production) on a daily basis. The use of medical radiation sources such as Computed Tomography (CT) scans and X-ray has increased rapidly, especially in the treatment of older populations. Micro Ribonucleic Acids (miRNAs) are the major regulators of multiple low-dose radiation-induced biological processes through post-translational inhibition. As a result, understanding age-related changes of miRNA profiles that may compromise the population after low dose radiation exposure has become increasingly important. Materials and methods: In this study, we irradiated both young (2 months) and old (26 months) C57BL/6J mice with low dose radiation (10 mGy and 100 mGy at 1 mGy/min using an open beam 60Co gamma source) and checked the miRNA expression profiles. Results: The global miRNA expression of old mice was significantly reduced compared to that of young mice. Low dose radiation at 10 mGy significantly increased the global miRNA expression in both old and young mice one week following irradiation, which suggests that 10 mGy low dose radiation may reverse the global inhibition effects of aging on miRNA expression. Higher 100 mGy radiation slightly reduced the global expression of miRNAs. We also identified several miRNAs that were elevated or reduced in all of the radiation treatment groups; these can be further explored as candidates for the radiation-induced bio-markers. Conclusions: The results of our study demonstrate that both radiation and aging can influence the global expression of miRNAs, while low dose radiation modulates the expression of miRNAs in a dose-, time-, and age-dependent manner.


Assuntos
Envelhecimento , Radioisótopos de Cobalto , MicroRNAs/metabolismo , Radiação Ionizante , Animais , Biomarcadores , Relação Dose-Resposta à Radiação , Raios gama , Perfilação da Expressão Gênica , Sistema Imunitário/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , Fenótipo , Radiobiologia
15.
Int J Radiat Biol ; 95(7): 816-840, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30601684

RESUMO

For more than a century, ionizing radiation has been indispensable mainly in medicine and industry. Radiation research is a multidisciplinary field that investigates radiation effects. Radiation research was very active in the mid- to late 20th century, but has then faced challenges, during which time funding has fluctuated widely. Here we review historical changes in funding situations in the field of radiation research, particularly in Canada, European Union countries, Japan, South Korea, and the US. We also provide a brief overview of the current situations in education and training in this field. A better understanding of the biological consequences of radiation exposure is becoming more important with increasing public concerns on radiation risks and other radiation literacy. Continued funding for radiation research is needed, and education and training in this field are also important.


Assuntos
Exposição à Radiação , Radiobiologia/economia , Radiobiologia/tendências , Radioterapia/economia , Apoio à Pesquisa como Assunto/história , Apoio à Pesquisa como Assunto/tendências , Animais , Canadá , União Europeia , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Japão , Lesões por Radiação , Proteção Radiológica/métodos , Radiação Ionizante , Liberação Nociva de Radioativos , Radiobiologia/educação , Radioterapia/efeitos adversos , Radioterapia/tendências , República da Coreia , Pesquisa , Estados Unidos
16.
Int J Radiat Biol ; 95(10): 1361-1371, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30582711

RESUMO

Health risks associated with the exposure of humans to low-dose ionizing radiation are currently estimated using the Linear-No-Threshold model. Over the last few decades, however, this model has been widely criticized for inconsistency with a large body of experimental evidence. Substantial efforts have been made to delineate biological mechanisms and health-related outcomes of low-dose radiation. These include a large DOE-funded Low Dose program operated in the 2000s, as well as the EU funded programs, previously NOTE and DOREMI and currently MELODI. Although not as widely known, the Atomic Energy of Canada Limited (AECL) in Chalk River, operated a low-dose radiobiology program since as early as 1948. The Canadian Nuclear Laboratories (CNL), the successor to AECL since 2015, has expanded this program into new areas making it the world's most robust, centrally coordinated and long-lived research efforts to delineate the biological effects of low-dose radiation. The purpose of this review is to provide a high-level overview of the low-dose radiobiology program maintained at CNL while capturing the historical perspectives. Past studies carried out at CNL have substantially influenced the area of low-dose radiobiology, exemplified by highly cited papers showing delays in spontaneous tumorigenesis in low-dose irradiated mice. The current low-dose research program at CNL is not only addressing a wide range of mechanistic questions about the biological effects of low doses - from genetic to epigenetic to immunological questions - but also moving toward novel areas, such as the dosimetry and health consequences of space radiation and the use of low-dose radiation in cancer therapy and regenerative medicine.


Assuntos
Energia Nuclear , Radiobiologia/tendências , Pesquisa/tendências , Algoritmos , Animais , Canadá , Reparo do DNA , Modelos Animais de Doenças , Humanos , Sistema Imunitário , Cooperação Internacional , Modelos Lineares , Camundongos , Mitocôndrias/efeitos da radiação , Neoplasias/radioterapia , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/prevenção & controle , Nêutrons , Radiometria , Espécies Reativas de Oxigênio , Células-Tronco
17.
Environ Mol Mutagen ; 59(7): 586-594, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30151952

RESUMO

Existing and future nuclear fusion technologies involve the production and use of large quantities of tritium, a highly volatile, but low toxicity beta-emitting isotope of hydrogen. Tritium has received international attention because of public and scientific concerns over its release to the environment and the potential health impact of its internalization. This article provides a brief summary of the current state of knowledge of both the biological and regulatory aspects of tritium exposure; it also explores the gaps in this knowledge and provides recommendations on the best ways forward for improving our understanding of the health effects of low-level exposure to it. Linking health effects specifically to tritium exposure is challenging in epidemiological studies due to high uncertainty in tritium dosimetry and often suboptimal cohort sizes. We therefore argued that limits for tritium in drinking water should be based on evidence derived from controlled in vivo animal tritium toxicity studies that use realistically low levels of tritium. This article presents one such mouse study, undertaken within an international collaboration, and discusses the implications of its main findings, such as the similarity of the biokinetics of tritiated water (HTO) and organically bound tritium (OBT) and the higher biological effectiveness of OBT. This discussion is consistent with the position expressed in this article that in vivo animal tritium toxicity studies carried out within large, multi-partner collaborations allow evaluation of a great variety of health-related endpoints and essential to the development of international consensus on the regulation of tritium levels in the environment. Environ. Mol. Mutagen. 59:586-594, 2018. © 2018 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Água Potável/efeitos adversos , Trítio/efeitos adversos , Aminoácidos/análise , Aminoácidos/farmacocinética , Animais , Sítios de Ligação , Consenso , Água Potável/análise , Raios gama/efeitos adversos , Dosimetria in Vivo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Monitoramento de Radiação , Risco , Distribuição Tecidual , Trítio/análise , Trítio/farmacocinética , Trítio/toxicidade , Organização Mundial da Saúde
18.
Int J Radiat Biol ; 94(9): 825-828, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952691

RESUMO

PURPOSE: Exposure to high dose ionizing radiation leads to premature cell senescence and suppression of cell proliferation. In contrast, low dose and low dose-rate gamma-irradiation can lead to stimulation of cell proliferation. We aimed to examine whether the low dose radiation-induced proliferation of normal human fibroblasts can lead to a progressive depletion of proliferation potential and to an early onset of senescence. MATERIALS AND METHODS: Normal human embryonic lung fibroblasts (HELF-104) at passage 22-24 were gamma-irradiated with doses of 0 (sham-irradiation), 10, 30, 50, 90, 120, 150, 200, and 500 mGy as well as 1 and 2 Gy. After irradiation, the fraction of cells positively stained for senescence-associated ß-galactosidase activity was measured weekly until the cell culture completely ceased to proliferate. RESULTS: We show that single irradiation of HELF-104 cells with 30 and 50 mGy resulted in deceleration of senescence. The suppression of senescence was observed during almost the entire length of the study up to a complete arrest of cell growth. CONCLUSIONS: Our data, together with the previously published observation of delayed stimulation of proliferation in HELF-104 cells exposed to 30 mGy, suggest that low dose gamma-irradiation can increase the overall proliferative potential of normal human fibroblasts.


Assuntos
Senescência Celular/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Humanos
19.
Oncotarget ; 9(44): 27397-27411, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29937993

RESUMO

The aim of this study was to carry out a comprehensive examination of potential genotoxic effects of low doses of tritium delivered chronically to mice and to compare these effects to the ones resulting from equivalent doses of gamma-irradiation. Mice were chronically exposed for one or eight months to either tritiated water (HTO) or organically bound tritium (OBT) in drinking water at concentrations of 10 kBq/L, 1 MBq/L or 20 MBq/L. Dose rates of internal ß-particle resulting from such tritium treatments were calculated and matching external gamma-exposures were carried out. We measured cytogenetic damage in bone marrow and in peripheral blood lymphocytes (PBLs) and the cumulative tritium doses (0.009 - 181 mGy) were used to evaluate the dose-response of OBT in PBLs, as well as its relative biological effectiveness (RBE). Neither tritium, nor gamma exposures produced genotoxic effects in bone marrow. However, significant increases in chromosome damage rates in PBLs were found as a result of chronic OBT exposures at 1 and 20 M Bq/L, but not at 10 kBq/L. When compared to an external acute gamma-exposure ex vivo, the RBE of OBT for chromosome aberrations induction was evaluated to be significantly higher than 1 at cumulative tritium doses below 10 mGy. Although found non-existent at 10 kBq/L (the WHO limit), the genotoxic potential of low doses of tritium (>10 kBq/L), mainly OBT, may be higher than currently assumed.

20.
Oncotarget ; 9(18): 14692-14722, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581875

RESUMO

While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA