Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
2.
Carbohydr Polym ; 331: 121861, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388057

RESUMO

Endo-xylanase and endo-glucanase are supplemented to poultry diets in order to improve nutrient digestion and non-starch polysaccharide (NSP) fermentation. Here, the action of these enzymes on alcohol insoluble solids (AIS) from wheat and maize grains as well as its implications for starch digestion in milled grains were evaluated in vitro, under conditions mimicking the poultry digestive tract. For wheat AIS, GH11 endo-xylanase depolymerized soluble arabinoxylan (AX) during the gizzard phase, and proceeded to release insoluble AX under small intestine conditions. At the end of the in vitro digestion (480 min), the endo-xylanase, combined with a GH7 endo-ß-1,4-glucanase, released 30.5 % of total AX and 18.1 % of total glucan in the form of arabinoxylo- and gluco-oligosaccharides, as detected by HPAEC-PAD and MALDI-TOF-MS. For maize AIS, the combined enzyme action released 2.2 % and 7.0 % of total AX and glucan, respectively. Analogous in vitro digestion experiments of whole grains demonstrated that the enzymatic release of oligomers coincided with altered grain microstructure, as examined by SEM. In the present study, cell wall hydrolysis did not affect in vitro starch digestion kinetics for cereal grains. This study contributes to understanding the action of feed enzymes on cereal NSP under conditions mimicking the poultry digestive tract.


Assuntos
Grão Comestível , Amido , Animais , Amido/análise , Grão Comestível/química , Aves Domésticas , Polissacarídeos/análise , Dieta , Glucanos/análise , Digestão , Parede Celular , Ração Animal/análise , Endo-1,4-beta-Xilanases
3.
Food Funct ; 15(1): 223-235, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38054370

RESUMO

Starch is an important energy source for humans. Starch escaping digestion in the small intestine will transit to the colon to be fermented by gut microbes. Many gut microbes express α-amylases that can degrade soluble starch, but only a few are able to degrade intrinsic resistant starch (RS), which is insoluble and highly resistant to digestion (≥80% RS). We studied the in vitro fermentability of eight retrograded starches (RS-3 preparations) differing in rapidly digestible starch content (≥70%, 35-50%, ≤15%) by a pooled adult faecal inoculum and found that fermentability depends on the digestible starch fraction. Digestible starch was readily fermented yielding acetate and lactate, whereas resistant starch was fermented much slower generating acetate and butyrate. Primarily Bifidobacterium increased in relative abundance upon digestible starch fermentation, whereas resistant starch fermentation also increased relative abundance of Ruminococcus and Lachnospiraceae. The presence of small fractions of total digestible starch (±25%) within RS-3 preparations influenced the fermentation rate and microbiota composition, after which the resistant starch fraction was hardly fermented. By short-chain fatty acid quantification, we observed that six individual faecal inocula obtained from infants and adults were able to ferment digestible starch, whereas only one adult faecal inoculum was fermenting intrinsic RS-3. This suggests that, in contrast to digestible starch, intrinsic RS-3 is only fermentable when specific microbes are present. Our data illustrates that awareness is required for the presence of digestible starch during in vitro fermentation of resistant starch, since such digestible fraction might influence and overrule the evalution of the prebiotic potential of resistant starches.


Assuntos
Amido Resistente , Amido , Lactente , Adulto , Humanos , Amido Resistente/metabolismo , Fermentação , Amido/metabolismo , Fezes/microbiologia , Acetatos , Digestão
4.
Front Microbiol ; 14: 1131953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275167

RESUMO

Antibiotic exposure disturbs the developing infant gut microbiota. The capacity of the gut microbiota to recover from this disturbance (resilience) depends on the type of antibiotic. In this study, infant gut microbiota was exposed to a combination of amoxicillin and clavulanate (amoxicillin/clavulanate) in an in vitro colon model (TIM-2) with fecal-derived microbiota from 1-month-old (1-M; a mixed-taxa community type) as well as 3-month-old (3-M; Bifidobacterium dominated community type) breastfed infants. We investigated the effect of two common infant prebiotics, 2'-fucosyllactose (2'-FL) or galacto-oligosaccharides (GOS), on the resilience of infant gut microbiota to amoxicillin/clavulanate-induced changes in microbiota composition and activity. Amoxicillin/clavulanate treatment decreased alpha diversity and induced a temporary shift of microbiota to a community dominated by enterobacteria. Moreover, antibiotic treatment increased succinate and lactate in both 1- and 3-M colon models, while decreasing the production of short-chain (SCFA) and branched-chain fatty acids (BFCA). The prebiotic effect on the microbiota recovery depended on the fermenting capacity of antibiotic-exposed microbiota. In the 1-M colon model, the supplementation of 2'-FL supported the recovery of microbiota and restored the production of propionate and butyrate. In the 3-M colon model, GOS supplementation supported the recovery of microbiota and increased the production of acetate and butyrate.

5.
Food Funct ; 12(24): 12513-12525, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34811557

RESUMO

Human milk oligosaccharides (hMOs) are unique bioactive components in human milk. 3-Fucosyllactose (3-FL) is an abundantly present hMO that can be produced in sufficient amounts to allow application in infant formula. Lacto-N-triaose II (LNT2) can be obtained by acid hydrolysis of lacto-N-neotetraose (LNnT). Both 3-FL and LNT2 have been shown to have health benefits, but their impact on infant microbiota composition and microbial metabolic products such as short-chain fatty acids (SCFAs) is unknown. To gain more insight in fermentability, we performed in vitro fermentation studies of 3-FL and LNT2 using pooled fecal microbiota from 12-week-old infants. The commonly investigated galacto-oligosaccharides (GOS)/inulin (9 : 1) served as control. Compared to GOS/inulin, we observed a delayed utilization of 3-FL, which was utilized at 60.3% after 36 h of fermentation, and induced the gradual production of acetic acid and lactic acid. 3-FL specifically enriched bacteria of Bacteroides and Enterococcus genus. LNT2 was fermented much faster. After 14 h of fermentation, 90.1% was already utilized, and production of acetic acid, succinic acid, lactic acid and butyric acid was observed. LNT2 specifically increased the abundance of Collinsella, as well as Bifidobacterium. The GOS present in the GOS/inulin mixture was completely fermented after 14 h, while for inulin, only low DP was rapidly utilized after 14 h. To determine whether the fermentation might lead to enhanced colonization of commensal bacteria to gut epithelial cells, we investigated adhesion of the commensal Lactobacillus plantarum WCFS1 to Caco-2 cells. The fermentation digesta of LNT2 collected after 14 h, 24 h, and 36 h, and GOS/inulin after 24 h of fermentation significantly increased the adhesion of L. plantarum WCFS1 to Caco-2 cells, while 3-FL had no such effect. Our findings illustrate that fermentation of hMOs is very structure-dependent and different from the commonly applied GOS/inulin, which might lead to differential potencies to stimulate adhesion of commensal cells to gut epithelium and consequent microbial colonization. This knowledge might contribute to the design of tailored infant formulas containing specific hMO molecules to meet the need of infants during the transition from breastfeeding to formula.


Assuntos
Células Epiteliais/metabolismo , Microbioma Gastrointestinal/fisiologia , Inulina/metabolismo , Lactobacillus plantarum/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Trissacarídeos/metabolismo , Fezes , Feminino , Fermentação , Humanos , Lactente
6.
Food Funct ; 12(11): 5018-5026, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33954318

RESUMO

Human milk is widely acknowledged as the best food for infants, and that is not just because of nutritional features. Human milk also contains a plethora of bioactive molecules, including a large set of human milk oligosaccharides (hMOs). Especially fucosylated hMOs have received attention for their anti-adhesive effects on pathogens, preventing attachment to the intestine and infection. Because hMOs are generally challenging to produce in sufficient quantities to study and ultimately apply in (medical) infant formula, novel compounds that are inspired by hMO structures (so-called "mimics") are interesting compounds to produce and evaluate for their biological effects. Here we present our thorough study into the digestion, fermentation and anti-adhesive capacity of the novel compound di-fucosyl-ß-cyclodextrin (DFßCD), which was inspired by the molecular structures of hMOs. We establish that DFßCD is not digested by α-amylase and also resistant to fermentation by microbial enzymes from a 9 month-old infant inoculum. In addition, we reveal that DFßCD blocks adhesion of enterotoxigenic E. coli (ETEC) to Caco-2 cells, especially when DFßCD is pre-incubated with ETEC prior to addition to the Caco-2 cells. This suggests that DFßCD functions through a decoy effect. We expect that our results inspire the generation and biological evaluation of other fucosylated hMOs and mimics, to obtain a comprehensive overview of the anti-adhesive power of fucosylated glycans.


Assuntos
Digestão , Fermentação , Leite Humano/química , Oligossacarídeos/química , beta-Ciclodextrinas/farmacologia , Células CACO-2 , Escherichia coli , Glicosilação , Humanos , Lactente , Fórmulas Infantis/química , Intestinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA