RESUMO
Single cell cloning is a critical step for cell line development (CLD) for therapeutic protein production, with proof of monoclonality being compulsorily sought in regulatory filings. Among the different single cell deposition technologies, we found that fluorescence activated cell sorting (FACS) offers high probability of monoclonality and can allow selective enrichment of the producer cells. However, FACS instruments are expensive and resource-intensive, have a large footprint, require highly skilled operators and take hours for setup, thereby complicating the cell line generation process. With the aim of finding an easy-to-use alternative to FACS, we identified a flow cytometry-based microfluidic cell dispenser, which presents a single cell sorting solution for biopharmaceutical CLD. The microfluidic cell dispenser is small, budget-friendly, easy-to-use, requires lower-cost consumables, permits flow cytometry-enabled multiparametric target cell enrichment and offers fast and gentle single cell dispensing into multiwell plates. Following comprehensive evaluation, we found that single cell deposition by the microfluidic cell dispenser resulted in >99% probability of monoclonality for production cell lines. Moreover, the clonally derived producer cell lines generated from the microfluidic cell dispenser demonstrated comparable or improved growth profiles and production capability compared to the FACS derived cell lines. Taken together, microfluidic cell dispensing can serve as a cost-effective, efficient and convenient alternative to FACS, simplifying the biopharmaceutical CLD platform with significant reductions in both scientist time and running costs.
Assuntos
Cricetulus , Citometria de Fluxo , Células CHO , Animais , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodosRESUMO
The global COVID-19 pandemic ignited an unprecedented race to develop vaccines and antibody therapeutics. AstraZeneca's pursuit to provide AZD7442 (EVUSHELD), two long-acting, SARS-CoV-2 spike receptor binding domain-specific neutralizing monoclonal antibodies, to individuals at risk on highly accelerated timelines challenged our traditional ways of process development and spurred the rapid adoption of novel approaches. Conventional upstream development processes were replaced by agile strategies that combined technological advances and highly accelerated workflows. With calculated business risks and close cross-functional collaborations, this process paved the way for hyper accelerated antibody development from discovery through manufacturing, process validation, emergency use authorization filing, and global regulatory approvals. The result was initiation of commercial manufacturing at a contract manufacturing organization less than 6 months from the selection of cilgavimab and tixagevimab-a process that historically has taken close to 10 years.
RESUMO
Development of cell lines for biotherapeutic protein production requires screening large numbers of clones to identify and isolate high producing ones. As such, stable cell line generation is a time- and resource-intensive process. There is an increasing need to enhance the selection efficiency of high-yielding clonal cell lines for cell line development projects by using high throughput screening of live cells for markers predictive of productivity. Single cell deposition by fluorescence activated cell sorting (FACS) is a commonly performed method for cloning to generate cell lines derived from a single recombinant cell. We have developed a novel strategy to identify higher productivity cells at the FACS step by leveraging a simple viable cell staining method that detects mitochondrial membrane potential (Ψm), a key indicator of cellular metabolic activity. We chose a dual-emission dye (Mito-ID, Enzo Life Sciences) that fluoresces green and orange in living cells with the intensity of the orange fluorescence being dependent on the cells Ψm status. Using available clonal cell lines with known productivity, or stable transfectant pools, we evaluated Ψm of cell populations with Mito-ID dye. We determined that the intensity of the Ψm fluorescent signal correlates with the known fed-batch titers of the producer clones, and that cell sorting based on an optimal Ψm staining intensity selectively enriches for higher producing clones from nonclonal transfectant pools. These clones are phenotypically stable for recombinant protein production. Furthermore, the strategy has been successfully applied to identifying higher producing cell lines for a range of antibody molecular formats. Using this method, we can combine an enriching step with the cloning step for high producers, thereby saving time and resources in cell line development.
Assuntos
Anticorpos/metabolismo , Separação Celular/métodos , Metabolismo Energético , Citometria de Fluxo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Animais , Anticorpos/genética , Formação de Anticorpos , Células CHO , Células Clonais , Clonagem Molecular , Cricetulus , Corantes Fluorescentes , Fenótipo , Proteínas Recombinantes/biossínteseRESUMO
Biopharmaceutical protein manufacturing requires the highest producing cell lines to satisfy current multiple grams per liter requirements. Screening more clones increases the probability of identifying the high producers within the pool of available transfectant candidate cell lines. For the predominant industry mammalian host cell line, Chinese hamster ovary (CHO), traditional static-batch culture screening does not correlate with the suspension fed-batch culture used in manufacturing, and thus has little predictive utility. Small scale fed-batch screens in suspension culture correlate better with bioreactor processes but a limited number of clones can be screened manually. Scaled-down systems, such as shaken deep well plates, combined with automated liquid handling, offer a way for a limited number of scientists to screen many clones. A statistical analysis determined that 384 is the optimal number of clones to screen, with a 99% probability that six clones in the 95th percentile for productivity are included in the screen. To screen 384 clones efficiently by the predictive method of suspension fed-batch, the authors developed a shaken deep-well plate culturing platform, with an automated liquid handling system integrating cell counting and protein titering instruments. Critical factors allowing deep-well suspension culture to correlate with shake flask culture were agitation speed and culture volume. Using our automated system, one scientist can screen five times more clones than by manual fed-batch shake-flask or shaken culture tube screens and can identify cell lines for some therapeutic protein projects with production levels greater than 6 g/L. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1460-1471, 2018.