Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 95(4-1): 043201, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505844

RESUMO

Using the two-temperature model for ultrafast matter (UFM), we compare the equation of state, pair-distribution functions g(r), and phonons using the neutral pseudoatom (NPA) model with results from density functional theory (DFT) codes and molecular dynamics (MD) simulations for Al, Li, and Na. The NPA approach uses state-dependent first-principles pseudopotentials from an "all-electron" DFT calculation with finite-T exchange-correlation functional (XCF). It provides pair potentials, structure factors, the "bound" and "free" states, as well as a mean ionization Z[over ¯] unambiguously. These are not easily accessible via DFT+MD calculations which become prohibitive for T/T_{F} exceeding ∼0.6, where T_{F} is the Fermi temperature. Hence, both DFT+MD and NPA methods can be compared up to ∼8eV, while higher T can be addressed via the NPA. The high-T_{e} phonon calculations raise the question of UFM lattice stability and surface ablation in thin UFM samples. The ablation forces in a UFM slab are used to define an "ablation time" competing with phonon formation times in thin UFM samples. Excellent agreement for all properties is found between NPA and standard DFT codes, even for Li where a strongly nonlocal pseudopotential is used in DFT codes. The need to use pseudopotentials appropriate to the ionization state Z[over ¯] is emphasized. The effect of finite-T XCF is illustrated via its effect on the pressure and the electron-density distribution at a nucleus.

2.
Phys Rev E ; 96(5-1): 053206, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347759

RESUMO

We study the conductivities σ of (i) the equilibrium isochoric state σ_{is}, (ii) the equilibrium isobaric state σ_{ib}, and also the (iii) nonequilibrium ultrafast matter state σ_{uf} with the ion temperature T_{i} less than the electron temperature T_{e}. Aluminum, lithium, and carbon are considered, being increasingly complex warm dense matter systems, with carbon having transient covalent bonds. First-principles calculations, i.e., neutral-pseudoatom (NPA) calculations and density-functional theory (DFT) with molecular-dynamics (MD) simulations, are compared where possible with experimental data to characterize σ_{ic}, σ_{ib}, and σ_{uf}. The NPA σ_{ib} is closest to the available experimental data when compared to results from DFT with MD simulations, where simulations of about 64-125 atoms are typically used. The published conductivities for Li are reviewed and the value at a temperature of 4.5 eV is examined using supporting x-ray Thomson-scattering calculations. A physical picture of the variations of σ with temperature and density applicable to these materials is given. The insensitivity of σ to T_{e} below 10 eV for carbon, compared to Al and Li, is clarified.

3.
Phys Rev E ; 94(5-1): 053211, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967139

RESUMO

Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

4.
Phys Rev Lett ; 115(19): 193603, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588381

RESUMO

The band structure of matter determines its properties. In solids, it is typically mapped with angle-resolved photoemission spectroscopy, in which the momentum and the energy of incoherent electrons are independently measured. Sometimes, however, photoelectrons are difficult or impossible to detect. Here we demonstrate an all-optical technique to reconstruct momentum-dependent band gaps by exploiting the coherent motion of electron-hole pairs driven by intense midinfrared femtosecond laser pulses. Applying the method to experimental data for a semiconductor ZnO crystal, we identify the split-off valence band as making the greatest contribution to tunneling to the conduction band. Our new band structure measurement technique is intrinsically bulk sensitive, does not require a vacuum, and has high temporal resolution, making it suitable to study reactions at ambient conditions, matter under extreme pressures, and ultrafast transient modifications to band structures.

5.
J Chem Phys ; 141(17): 174503, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381527

RESUMO

A deuterated sample of CO2 structure I (sI) clathrate hydrate (CO2·8.3 D2O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO2 hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai et al. [J. Phys. Chem. 133, 124511 (2010)] and Bollengier et al. [Geochim. Cosmochim. Acta 119, 322 (2013)], but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO2 molecules filling the water channels. This CO2+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts a MH-III "like" filled ice structure with considerable disorder of the orientations of the CO2 molecule. Furthermore, the disorder appears to be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al., our neutron diffraction data show that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO2 hydrate transforms directly from the sI form to the filled ice structure.

6.
Phys Rev Lett ; 113(7): 073901, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170708

RESUMO

We investigate theoretically high-harmonic generation (HHG) in bulk crystals exposed to intense midinfrared lasers with photon energies smaller than the band gap. The two main mechanisms, interband and intraband HHG, are explored. Our analysis indicates that the interband current neglected so far is the dominant mechanism for HHG. Saddle point analysis in the Keldysh limit yields an intuitive picture of interband HHG in solids similar to atomic HHG. Interband and intraband HHG exhibit a fundamentally different wavelength dependence. This signature can be used to experimentally distinguish between the two mechanisms in order to verify their importance.

7.
J Chem Phys ; 136(5): 054502, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22320746

RESUMO

A neutron diffraction study was performed on the CD(4) : D(2)O structure H clathrate hydrate to refine its CD(4) fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD(4) molecules in the large 20-hedron (5(12)6(8)) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5(12)) and 12-hedron (4(3)5(6)6(3)) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD(4) molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water-methane hydrophobic interaction in clathrate hydrates and related dense structures.

8.
Phys Rev Lett ; 102(22): 229601, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19658907
9.
Proc Natl Acad Sci U S A ; 106(15): 6060-4, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332791

RESUMO

Atoms and molecules <0.9 nm in diameter can be incorporated in the cages formed by hydrogen-bonded water molecules making up the crystalline solid clathrate hydrates. For these materials crystallographic structures generally fall into 3 categories, which are 2 cubic forms and a hexagonal form. A unique clathrate hydrate structure, previously known only hypothetically, has been synthesized at high pressure and recovered at 77 K and ambient pressure in these experiments. These samples contain Xe as a guest atom and the details of this previously unobserved structure are described here, most notably the host-guest ratio is similar to the cubic Xe clathrate starting material. After pressure quench recovery to 1 atmosphere the structure shows considerable metastability with increasing temperature (T <160 K) before reverting back to the cubic form. This evidence of structural complexity in compositionally similar clathrate compounds indicates that the reaction path may be an important determinant of the structure, and impacts upon the structures that might be encountered in nature.

10.
Phys Rev Lett ; 101(24): 243001, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113617

RESUMO

Using different crystalline dielectrics and intense femtosecond laser pulses, we show that nonlinear absorption depends on sample orientation. This arises primarily because of the direction dependence of the effective mass of the electron. The multiphoton nature of the interaction creates a local probe that can be used anywhere in the material. We show that the structure of crystal quartz is not changed by repeated illumination of the focal region with 45 fs pulses.

11.
J Chem Phys ; 128(6): 064506, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18282055

RESUMO

Molecular dynamics simulations are used to study the stability of structure II H(2) and D(2) clathrates with different large and small guest occupancies at 160 and 250 K and 2.0 kbars. Simulations are performed with the recently proposed anisotropic site-site potentials of Wang for H2 and D2 [J. Quant. Spectrosc. Radiat. Transf. 76, 23 (2003)] which are parameterized to account for quantum corrections of order variant Planck's over 2pi(2) in the second virial coefficient. Occupancies of 0-2 in the small cages and 2-5 in the large cages are considered. Thermodynamic integration is used to determine the most stable guest occupancy at each temperature. Since lattice free energy and configurational energy differences are small for a number of different combinations of cage occupancies, one must expect that in bulk samples various combinations will indeed be observed. Special attention is given to the differences between H(2) and D(2) guests and implications on the hydrogen storage capacity of the clathrates are discussed.

12.
J Chem Phys ; 126(12): 124708, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17411153

RESUMO

Molecular dynamics simulations are used to study the stability of structure H (sH) methane clathrate hydrates in a 3 x 3 x 3 sH unit cell replica. Simulations are performed at experimental conditions of 300 K and 2 GPa for three methane intermolecular potentials. The five small cages of the sH unit cell are assigned methane guest occupancies of one and large cage guest occupancies of one to five are considered. Radial distribution functions, unit cell volumes, and configurational energies are studied as a function of large cage CH(4) occupancy. Free energy calculations are carried out to determine the stability of clathrates for large cage occupancies. Large cage occupancy of five is the most stable configuration for a Lennard-Jones united-atom potential and the Tse-Klein-McDonald potential parametrized for condensed methane phases and two for the most stable configuation for the Murad and Gubbins potential.

13.
J Chem Phys ; 125(15): 154509, 2006 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17059274

RESUMO

High-pressure, variable temperature infrared spectroscopy and first-principles calculations on the methane filled ice structure (MH-III) at high pressures are used to investigate the vibrational dynamics related to pressure induced modifications in hydrogen bonding. Infrared spectroscopy of isotopically dilute solutions of H(2)O in D(2)O is employed together with first-principles calculations to characterize proton dynamics with the pressure induced shortening of hydrogen bonds. A Fermi resonance is identified and shown to dominate the infrared spectrum in the pressure region between 10 and 30 GPa. Significant differences in the effects of the Fermi resonance observed between 10 and 300 K arise from the double-well potential energy surface of the hydrogen bond and quantum effects associated with the proton dynamics.

14.
Phys Rev Lett ; 97(11): 115503, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17025899

RESUMO

X-ray scattering and molecular dynamics simulations have been used to correlate the short range oxygen-oxygen structure with the intermediate range ordering (IRO) upon annealing very high density amorphous ice. While it is clear that the IRO that defines the network structure breaks down continuously to a minimum level, where there are weakened correlations extending beyond 7 Angstrom, at this point the local structure (O-O-O angles) is observed to change abruptly, allowing a continuous reemergence of a new IRO network. This is very different from a classic first order transition and helps reconcile previous data.

15.
J Chem Phys ; 125(10): 104501, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16999535

RESUMO

Molecular dynamics simulations are used to study the stability of structure H (sH) clathrate hydrates with the rare gases Ne, Ar, Kr, and Xe. Simulations on a 3 x 3 x 3 sH unit cell replica are performed at ambient pressure at 40 and 100 K temperatures. The small and medium (s+m) cages of the sH unit cell are assigned rare gas guest occupancies of 1 and for large (l) cages guest occupancies of 1-6 are considered. Radial distribution functions for guest pairs with occupancies in the l-l, l-(s+m), and (s+m)-(s+m) cages are presented. The unit cell volumes and configurational energies are studied as a function of large cage occupancy for the rare gases. Free energy calculations are carried out to determine the stability of clathrates for large cage occupancies at 100 K and 1 bar and 20 kbar pressures. These studies show that the most stable argon clathrate has five guests in the large cages. For krypton and xenon the most stable configurations have three and two guests in the large cages, respectively.

16.
J Chem Phys ; 124(20): 204707, 2006 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-16774364

RESUMO

Binary structure H (sH) hydrogen and methyl-tert-butylether (MTBE) clathrate hydrates are studied with molecular dynamics simulations. Simulations on a 3 x 3 x 3 sH unit cell with up to 4.7 mass % hydrogen gas are run at pressures of 100 bars and 2 kbars at 100 and 273 K. For the small and medium cages of the sH unit cell, H2 guest molecule occupancies of 0, 1 (single occupancy), and 2 (double occupancy) are considered with the MTBE molecule occupying all of the large cages. An increase of the small and medium cage occupancies from 1 to 2 leads to a jump in the unit cell volume and configurational energy. Calculations are also set up with 13, 23, and 89 of the MTBE molecules in the large cages replaced by sets of three to six H2 molecules, and the effects on the configurational energy and volume of the simulation cell are determined. As MTBE molecules are replaced with sets of H2 guests in the large cages, the configurational energy of the unit cell increases. At the lower temperature, the energy and volume of the clathrate are not sensitive to the number of hydrogen guests in the large cages; however, at higher temperatures the repulsions among the H2 guest molecules in the large cages cause an increase in the system energy and volume.

17.
Phys Rev Lett ; 96(14): 149601; discussion 149602, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16712130
18.
J Chem Phys ; 124(1): 14704, 2006 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-16409048

RESUMO

The binary structure II hydrogen and tetrahydrofurane (THF) clathrates are studied with molecular-dynamics simulations. Simulations are done at pressures of 120 and 1.013 bars for temperatures ranging from 100 to 273 K. For the small cages of the structure II unit cell, H2 guest molecule occupancies of 0, 16 (single occupancy), and 32 (double occupancy) are considered. THF occupancies of 0-8 in the large cages are studied. For cases in which THF does not occupy all large cages in a unit cell, the remaining large cages can be occupied with sets of four H2 guest molecules. The unit-cell volumes and configurational energies are compared in the different occupancy cases. Increasing the small cage occupancy leads to an increase in the unit-cell volume and thermal-expansion coefficient. Among simulations with the same small cage occupancy, those with the large cages containing 4H2 guests have the largest volumes. The THF guest molecules have a stabilizing effect on the clathrate and the configurational energy of the unit cell decreases linearly as the THF content increases. For binary THF + H2 clathrates, the substitution of the THF molecules in the large cages with sets of 4H2 molecules increases the configurational energy. For the binary clathrates, various combinations of THF and H2 occupancies have similar configurational energies.

19.
Nat Mater ; 4(12): 917-21, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16267573

RESUMO

The anomalous glass-like thermal conductivity of crystalline clathrates has been suggested to be the result of the scattering of thermal phonons of the framework by 'rattling' motions of the guests in the clathrate cages. Using the site-specific (83)Kr nuclear resonant inelastic scattering spectroscopy in combination with conventional incoherent inelastic neutron scattering and molecular-dynamics simulations, we provide unambiguous evidence and characterization of the effects on these guest-host interactions in a structure-II Kr clathrate hydrate. The resonant scattering of phonons led to unprecedented large anharmonic motions of the guest atoms. The anharmonic interaction underlies the anomalous thermal transport in this system. Clathrates are prototypical models for a class of crystalline framework materials with glass-like thermal conductivity. The explanation of the unusual molecular dynamics has a wide implication for the understanding of the thermal properties of disordered solids and structural glasses.


Assuntos
Criptônio/química , Nêutrons , Simulação por Computador , Isótopos , Modelos Químicos , Movimento (Física) , Condutividade Térmica
20.
J Chem Phys ; 123(5): 051107, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16108623

RESUMO

Proton NMR shielding constants and chemical shifts for hydrogen guests in small and large cages of structure II clathrates are calculated using density-functional theory and the gauge-invariant atomic-orbital method. Shielding constants are calculated at the B3LYP level with the 6-311++G(d,p) basis set. The calculated chemical shifts are corrected with a linear regression to reproduce the experimental chemical shifts of a set of standard molecules. The calculated chemical shifts of single hydrogen molecules in the small and large structure II cages are 4.94 and 4.84 ppm, respectively, which show that within the error range of the method the H2 guest molecules in the small and large cages cannot be distinguished. Chemical shifts are also calculated for double occupancy of the hydrogen guests in small cages, and double, triple, and quadruple occupancy in large cages. Multiple occupancy changes the chemical shift of the hydrogen guests by approximately 0.2 ppm. The relative effects of other guest molecules and the cage on the chemical shift are studied for the cages with multiple occupancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA