Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798553

RESUMO

Lymphocyte activation involves a transition from quiescence and associated catabolic metabolism to a metabolic state with noted similarities to cancer cells such as heavy reliance on aerobic glycolysis for energy demands and increased nutrient requirements for biomass accumulation and cell division 1-3 . Following antigen receptor ligation, lymphocytes require spatiotemporally distinct "second signals". These include costimulatory receptor or cytokine signaling, which engage discrete programs that often involve remodeling of organelles and increased nutrient uptake or synthesis to meet changing biochemical demands 4-6 . One such signaling molecule, IL-4, is a highly pleiotropic cytokine that was first identified as a B cell co-mitogen over 30 years ago 7 . However, how IL-4 signaling mechanistically supports B cell proliferation is incompletely understood. Here, using single cell RNA sequencing we find that the cholesterol biosynthetic program is transcriptionally upregulated following IL-4 signaling during the early B cell response to influenza virus infection, and is required for B cell activation in vivo . By limiting lipid availability in vitro , we determine cholesterol to be essential for B cells to expand their endoplasmic reticulum, progress through cell cycle, and proliferate. In sum, we demonstrate that the well-known ability of IL-4 to act as a B cell growth factor is through a previously unknown rewiring of specific lipid anabolic programs, relieving sensitivity of cells to environmental nutrient availability.

2.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798340

RESUMO

Antibodies play a crucial role in adaptive immune responses by determining B cell specificity to antigens and focusing immune function on target pathogens. Accurate prediction of antibody-antigen specificity directly from antibody sequencing data would be a great aid in understanding immune responses, guiding vaccine design, and developing antibody-based therapeutics. In this study, we present a method of supervised fine-tuning for antibody language models, which improves on previous results in binding specificity prediction to SARS-CoV-2 spike protein and influenza hemagglutinin. We perform supervised fine-tuning on four pre-trained antibody language models to predict specificity to these antigens and demonstrate that fine-tuned language model classifiers exhibit enhanced predictive accuracy compared to classifiers trained on pre-trained model embeddings. The change of model attention activations after supervised fine-tuning suggested that this performance was driven by an increased model focus on the complementarity determining regions (CDRs). Application of the supervised fine-tuned models to BCR repertoire data demonstrated that these models could recognize the specific responses elicited by influenza and SARS-CoV-2 vaccination. Overall, our study highlights the benefits of supervised fine-tuning on pre-trained antibody language models as a mechanism to improve antigen specificity prediction.

3.
Nat Biotechnol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580861

RESUMO

Single-cell RNA sequencing has been widely used to investigate cell state transitions and gene dynamics of biological processes. Current strategies to infer the sequential dynamics of genes in a process typically rely on constructing cell pseudotime through cell trajectory inference. However, the presence of concurrent gene processes in the same group of cells and technical noise can obscure the true progression of the processes studied. To address this challenge, we present GeneTrajectory, an approach that identifies trajectories of genes rather than trajectories of cells. Specifically, optimal transport distances are calculated between gene distributions across the cell-cell graph to extract gene programs and define their gene pseudotemporal order. Here we demonstrate that GeneTrajectory accurately extracts progressive gene dynamics in myeloid lineage maturation. Moreover, we show that GeneTrajectory deconvolves key gene programs underlying mouse skin hair follicle dermal condensate differentiation that could not be resolved by cell trajectory approaches. GeneTrajectory facilitates the discovery of gene programs that control the changes and activities of biological processes.

4.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587074

RESUMO

The central nervous system HIV reservoir is incompletely understood and is a major barrier to HIV cure. We profiled people with HIV (PWH) and uninfected controls through single-cell transcriptomic and T cell receptor (TCR) sequencing to understand the dynamics of HIV persistence in the CNS. In PWH on ART, we found that most participants had single cells containing HIV-1 RNA, which was found predominantly in CD4 central memory T cells, in both cerebrospinal fluid (CSF) and blood. HIV-1 RNA-containing cells were found more frequently in CSF than blood, indicating a higher burden of reservoir cells in the CNS than blood for some PWH. Most CD4 T cell clones containing infected cells were compartment specific, while some (22%) - including rare clones with members of the clone containing detectable HIV RNA in both blood and CSF - were found in both CSF and blood. These results suggest that infected T cells trafficked between tissue compartments and that maintenance and expansion of infected T cell clones contributed to the CNS reservoir in PWH on ART.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Sistema Nervoso Central , RNA , Células Clonais
5.
Entropy (Basel) ; 26(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38539769

RESUMO

Ensuring robustness of image classifiers against adversarial attacks and spurious correlation has been challenging. One of the most effective methods for adversarial robustness is a type of data augmentation that uses adversarial examples during training. Here, inspired by computational models of human vision, we explore a synthesis of this approach by leveraging a structured prior over image formation: the 3D geometry of objects and how it projects to images. We combine adversarial training with a weight initialization that implicitly encodes such a prior about 3D objects via 3D reconstruction pre-training. We evaluate our approach using two different datasets and compare it to alternative pre-training protocols that do not encode a prior about 3D shape. To systematically explore the effect of 3D pre-training, we introduce a novel dataset called Geon3D, which consists of simple shapes that nevertheless capture variation in multiple distinct dimensions of geometry. We find that while 3D reconstruction pre-training does not improve robustness for the simplest dataset setting, we consider (Geon3D on a clean background) that it improves upon adversarial training in more realistic (Geon3D with textured background and ShapeNet) conditions. We also find that 3D pre-training coupled with adversarial training improves the robustness to spurious correlations between shape and background textures. Furthermore, we show that the benefit of using 3D-based pre-training outperforms 2D-based pre-training on ShapeNet. We hope that these results encourage further investigation of the benefits of structured, 3D-based models of vision for adversarial robustness.

6.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464315

RESUMO

Effective anti-tumor immunity is largely driven by cytotoxic CD8+ T cells that can specifically recognize tumor antigens. However, the factors which ultimately dictate successful tumor rejection remain poorly understood. Here we identify a subpopulation of CD8+ T cells which are tumor antigen-specific in patients with melanoma but resemble KIR+CD8+ T cells with a regulatory function (Tregs). These tumor antigen-specific KIR+CD8+ T cells are detectable in both the tumor and the blood, and higher levels of this population are associated with worse overall survival. Our findings therefore suggest that KIR+CD8+ Tregs are tumor antigen-specific but uniquely suppress anti-tumor immunity in patients with melanoma.

7.
Nature ; 627(8004): 628-635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383790

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Assuntos
Inflamação , Interleucina-10 , Esfingolipídeos , Animais , Humanos , Camundongos , Ceramidas/química , Ceramidas/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Homeostase , Imunidade Inata , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas Proto-Oncogênicas c-rel , Esfingolipídeos/metabolismo
8.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260586

RESUMO

Spatially resolved transcriptomics or proteomics data have the potential to contribute fundamental insights into the mechanisms underlying physiologic and pathological processes. However, analysis of these data capable of relating spatial information, multiplexed markers, and their observed phenotypes remains technically challenging. To analyze these relationships, we developed SORBET, a deep learning framework that leverages recent advances in graph neural networks (GNN). We apply SORBET to predict tissue phenotypes, such as response to immunotherapy, across different disease processes and different technologies including both spatial proteomics and transcriptomics methods. Our results show that SORBET accurately learns biologically meaningful relationships across distinct tissue structures and data acquisition methods. Furthermore, we demonstrate that SORBET facilitates understanding of the spatially-resolved biological mechanisms underlying the inferred phenotypes. In sum, our method facilitates mapping between the rich spatial and marker information acquired from spatial 'omics technologies to emergent biological phenotypes. Moreover, we provide novel techniques for identifying the biological processes that comprise the predicted phenotypes.

9.
Nucleic Acids Res ; 52(2): 548-557, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38109302

RESUMO

High throughput sequencing of B cell receptors (BCRs) is increasingly applied to study the immense diversity of antibodies. Learning biologically meaningful embeddings of BCR sequences is beneficial for predictive modeling. Several embedding methods have been developed for BCRs, but no direct performance benchmarking exists. Moreover, the impact of the input sequence length and paired-chain information on the prediction remains to be explored. We evaluated the performance of multiple embedding models to predict BCR sequence properties and receptor specificity. Despite the differences in model architectures, most embeddings effectively capture BCR sequence properties and specificity. BCR-specific embeddings slightly outperform general protein language models in predicting specificity. In addition, incorporating full-length heavy chains and paired light chain sequences improves the prediction performance of all embeddings. This study provides insights into the properties of BCR embeddings to improve downstream prediction applications for antibody analysis and discovery.


Assuntos
Processamento de Linguagem Natural , Receptores de Antígenos de Linfócitos B , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoglobulinas , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/genética , Sequência de Aminoácidos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA