Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Psychopharmacology (Berl) ; 239(4): 1035-1051, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34181035

RESUMO

RATIONALE: Relapse often occurs when individuals are exposed to stimuli or cues previously associated with the drug-taking experience. The ability of drug cues to trigger relapse is believed to be a consequence of incentive salience attribution, a process by which the incentive value of reward is transferred to the reward-paired cue. Sign-tracker (ST) rats that attribute enhanced incentive value to reward cues are more prone to relapse compared to goal-tracker (GT) rats that primarily attribute predictive value to such cues. OBJECTIVES: The neurobiological mechanisms underlying this individual variation in relapse propensity remains largely unexplored. The paraventricular nucleus of the thalamus (PVT) has been identified as a critical node in the regulation of cue-elicited behaviors in STs and GTs, including cue-induced reinstatement of drug-seeking behavior. Here we used a chemogenetic approach to assess whether "top-down" cortical input from the prelimbic cortex (PrL) to the PVT plays a role in mediating individual differences in relapse propensity. RESULTS: Chemogenetic inhibition of the PrL-PVT pathway selectively decreased cue-induced reinstatement of drug-seeking behavior in STs, without affecting behavior in GTs. In contrast, cocaine-primed drug-seeking behavior was not affected in either phenotype. Furthermore, when rats were characterized based on a different behavioral phenotype-locomotor response to novelty-inhibition of the PrL-PVT pathway had no effect on either cue- or drug-induced reinstatement. CONCLUSIONS: These results highlight an important role for the PrL-PVT pathway in vulnerability to relapse that is consequent to individual differences in the propensity to attribute incentive salience to discrete reward cues.


Assuntos
Sinais (Psicologia) , Comportamento de Procura de Droga , Animais , Masculino , Motivação , Ratos , Ratos Sprague-Dawley , Recidiva , Recompensa , Tálamo
3.
Psychopharmacology (Berl) ; 237(12): 3741-3758, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32852601

RESUMO

RATIONALE: Prior research suggests that the neural pathway from the lateral hypothalamic area (LHA) to the paraventricular nucleus of the thalamus (PVT) mediates the attribution of incentive salience to Pavlovian reward cues. However, a causal role for the LHA and the neurotransmitters involved have not been demonstrated in this regard. OBJECTIVES: To examine (1) the role of LHA in the acquisition of Pavlovian conditioned approach (PavCA) behaviors, and (2) the role of PVT orexin 1 receptors (OX1r) and orexin 2 receptors (OX2r) in the expression of PavCA behaviors and conditioned reinforcement. METHODS: Rats received excitotoxic lesions of the LHA prior to Pavlovian training. A separate cohort of rats characterized as sign-trackers (STs) or goal-trackers (GTs) received the OX1r antagonist SB-334867, or the OX2r antagonist TCS-OX2-29, into the PVT, to assess their effects on the expression of PavCA behavior and on the conditioned reinforcing properties of a Pavlovian reward cue. RESULTS: LHA lesions attenuated the development of sign-tracking behavior. Administration of either the OX1r or OX2r antagonist into the PVT reduced sign-tracking behavior in STs. Further, OX2r antagonism reduced the conditioned reinforcing properties of a Pavlovian reward cue in STs. CONCLUSIONS: The LHA is necessary for the development of sign-tracking behavior; and blockade of orexin signaling in the PVT attenuates the expression of sign-tracking behavior and the conditioned reinforcing properties of a Pavlovian reward cue. Together, these data suggest that LHA orexin inputs to the PVT are a key component of the circuitry that encodes the incentive motivational value of reward cues.


Assuntos
Sinais (Psicologia) , Região Hipotalâmica Lateral/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Motivação/fisiologia , Receptores de Orexina/fisiologia , Recompensa , Animais , Benzoxazóis/administração & dosagem , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Isoquinolinas/administração & dosagem , Masculino , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Motivação/efeitos dos fármacos , Naftiridinas/administração & dosagem , Antagonistas dos Receptores de Orexina/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Ureia/administração & dosagem , Ureia/análogos & derivados
4.
Psychopharmacology (Berl) ; 235(4): 999-1014, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29285634

RESUMO

RATIONALE: The paraventricular nucleus of the thalamus (PVT) has been shown to mediate cue-motivated behaviors, such as sign- and goal-tracking, as well as reinstatement of drug-seeking behavior. However, the role of the PVT in mediating individual variation in cue-induced drug-seeking behavior remains unknown. OBJECTIVES: This study aimed to determine if inactivation of the PVT differentially mediates cue-induced drug-seeking behavior in sign-trackers and goal-trackers. METHODS: Rats were characterized as sign-trackers (STs) or goal-trackers (GTs) based on their Pavlovian conditioned approach behavior. Rats were then exposed to 15 days of cocaine self-administration, followed by a 2-week forced abstinence period and then extinction training. Rats then underwent tests for cue-induced reinstatement and general locomotor activity, prior to which they received an infusion of either saline (control) or baclofen/muscimol (B/M) to inactivate the PVT. RESULTS: Relative to control animals of the same phenotype, GTs show a robust increase in cue-induced drug-seeking behavior following PVT inactivation, whereas the behavior of STs was not affected. PVT inactivation did not affect locomotor activity in either phenotype. CONCLUSION: In GTs, the PVT appears to inhibit the expression of drug-seeking, presumably by attenuating the incentive value of the drug cue. Thus, inactivation of the PVT releases this inhibition in GTs, resulting in an increase in cue-induced drug-seeking behavior. PVT inactivation did not affect cue-induced drug-seeking behavior in STs, suggesting that the role of the PVT in encoding the incentive motivational value of drug cues differs between STs and GTs.


Assuntos
Cocaína/administração & dosagem , Sinais (Psicologia) , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Objetivos , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Masculino , Núcleos da Linha Média do Tálamo/fisiologia , Motivação/efeitos dos fármacos , Motivação/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA