Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 13(1): 20567, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996508

RESUMO

Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sesquiterpenos , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Reparo do DNA , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Dano ao DNA , Raios Ultravioleta , Proteína Grupo D do Xeroderma Pigmentoso/genética
2.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798363

RESUMO

Purpose: Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. Experimental Design: We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Results: Functional assays showed NER deficiency in ccRCC cells. Irofulven sensitivity increased in some cell lines. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. Conclusions: ccRCC cell line based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.

3.
Br J Cancer ; 119(11): 1392-1400, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30425352

RESUMO

BACKGROUND: Poly-ADP ribose polymerase (PARP) inhibitor-based cancer therapy selectively targets cells with deficient homologous recombination repair. Considering their long-term use in maintenance treatment, any potential mutagenic effect of PARP inhibitor treatment could accelerate the development of resistance or harm non-malignant somatic cells. METHODS: We tested the mutagenicity of long-term treatment with the PARP inhibitor niraparib using whole-genome sequencing of cultured cell clones and whole-exome sequencing of patient-derived breast cancer xenografts. RESULTS: We observed no significant increase in the number and alteration in the spectrum of base substitutions, short insertions and deletions and genomic rearrangements upon niraparib treatment of human DLD-1 colon adenocarcinoma cells, wild-type and BRCA1 mutant chicken DT40 lymphoblastoma cells and BRCA1-defective SUM149PT breast carcinoma cells, except for a minor increase in specific deletion classes. We also did not detect any contribution of in vivo niraparib treatment to subclonal mutations arising in breast cancer-derived xenografts. CONCLUSIONS: The results suggest that long-term inhibition of DNA repair with PARP inhibitors has no or only limited mutagenic effect. Mutagenesis due to prolonged use of PARP inhibitors in cancer treatment is therefore not expected to contribute to the genetic evolution of resistance, generate significant immunogenic neoepitopes or induce secondary malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Indazóis/uso terapêutico , Mutação , Piperidinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos
4.
Nucleic Acids Res ; 32(9): e74, 2004 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15161944

RESUMO

Cancer derived microarray data sets are routinely produced by various platforms that are either commercially available or manufactured by academic groups. The fundamental difference in their probe selection strategies holds the promise that identical observations produced by more than one platform prove to be more robust when validated by biology. However, cross-platform comparison requires matching corresponding probe sets. We are introducing here sequence-based matching of probes instead of gene identifier-based matching. We analyzed breast cancer cell line derived RNA aliquots using Agilent cDNA and Affymetrix oligonucleotide microarray platforms to assess the advantage of this method. We show, that at different levels of the analysis, including gene expression ratios and difference calls, cross-platform consistency is significantly improved by sequence- based matching. We also present evidence that sequence-based probe matching produces more consistent results when comparing similar biological data sets obtained by different microarray platforms. This strategy allowed a more efficient transfer of classification of breast cancer samples between data sets produced by cDNA microarray and Affymetrix gene-chip platforms.


Assuntos
Sondas de DNA/genética , Sondas de DNA/normas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Mama/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de DNA
5.
Bioinformatics ; 18(3): 389-94, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11934737

RESUMO

MOTIVATION: The simplest level of statistical analysis of cancer associated gene expression matrices is aimed at finding consistently up- or down-regulated genes within a given set of tumor samples. Considering the high level of gene expression diversity detected in cancer, one needs to assess the probability that the consistent mis-regulation of a given gene is due to chance. Furthermore, it is important to determine the required sample number that will ensure the meaningful statistical analysis of massively parallel gene expression measurements. RESULTS: The probability of consistent mis-regulation is calculated in this paper for binarized gene expression data, using combinatorial considerations. For practical purposes, we also provide a set of accurate approximate formulas for determining the same probability in a computationally less intensive way. When the pool of mis-regulatable genes is restricted, the probability of consistent mis-regulation can be overestimated. We show, however, that this effect has little practical consequences for cancer associated gene expression measurements published in the literature. Finally, in order to aid experimental design, we have provided estimates on the required sample number that will ensure that the detected consistent mis-regulation is not due to chance. Our results suggest that less than 20 sufficiently diverse tumor samples may be enough to identify consistently mis-regulated genes in a statistically significant manner. AVAILABILITY: An implementation using Mathematica (tm) of the main equation of the paper, (4), is available at www.me.chalmers.se/~mwahde/bioinfo.html.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Modelos Estatísticos , Perfilação da Expressão Gênica/métodos , Humanos , Modelos Genéticos , Tamanho da Amostra , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA