Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Food Microbiol ; 406: 110395, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37734280

RESUMO

The demand for products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics have increased over the last years. Novel non-thermal technologies such as cold atmospheric plasma (CAP) and natural antimicrobials such as grape seed extract (GSE) are attractive alternatives to conventional food decontamination methods as they can meet the above demands. The aim of this study was to investigate the microbial inactivation potential of GSE, CAP (in this case, a remote air plasma with an ozone-dominated RONS output) and their combination against L. monocytogenes on five different 3D in vitro models of varying rheological, structural, and biochemical composition. More specifically, we studied the microbial dynamics, as affected by 1 % (w/v) GSE, CAP or their combination, in three monophasic Xanthan Gum (XG) based 3D models of relatively low viscosity (1.5 %, 2.5 % and 5 % w/v XG) and in a biphasic XG/Whey Protein (WPI) and a triphasic XG/WPI/fat model. A significant microbial inactivation (comparable to liquid broth) was achieved in presence of GSE on the surface of all monophasic models regardless of their viscosity. In contrast, the GSE antimicrobial effect was diminished in the multiphasic systems, resulting to only a slight disturbance of the microbial growth. In contrast, CAP showed better antimicrobial potential on the surface of the complex multiphasic models as compared to the monophasic models. When combined, in a hurdle approach, GSE/CAP showed promising microbial inactivation potential in all our 3D models, but less microbial inactivation in the structurally and biochemically complex multiphasic models, with respect to the monophasic models. The level of inactivation also depended on the duration of the exposure to GSE. Our results contribute towards understanding the antimicrobial efficacy of GSE, CAP and their combination as affected by robustly controlled changes of rheological and structural properties and of the biochemical composition of the environment in which bacteria grow. Therefore, our results contribute to the development of sustainable food safety strategies.


Assuntos
Extrato de Sementes de Uva , Listeria monocytogenes , Gases em Plasma , Extrato de Sementes de Uva/farmacologia , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Gases em Plasma/farmacologia , Contagem de Colônia Microbiana , Antibacterianos/farmacologia
2.
Foods ; 12(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36900445

RESUMO

Concerns regarding the role of antimicrobial resistance (AMR) in disease outbreaks are growing due to the excessive use of antibiotics. Moreover, consumers are demanding food products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics. Grape seed extract (GSE) is isolated from wine industry waste and is an interesting source of natural antimicrobials, especially when aiming to increase sustainable processing. The aim of this study was to obtain a systematic understanding of the microbial inactivation efficacy/potential of GSE against Listeria monocytogenes (Gram-positive), Escherichia coli and Salmonella Typhimurium (Gram-negative) in an in vitro model system. More specifically, for L. monocytogenes, the effects of the initial inoculum concentration, bacterial growth phase and absence of the environmental stress response regulon (SigB) on the GSE microbial inactivation potential were investigated. In general, GSE was found to be highly effective at inactivating L. monocytogenes, with higher inactivation achieved for higher GSE concentrations and lower initial inoculum levels. Generally, stationary phase cells were more resistant/tolerant to GSE as compared to exponential phase cells (for the same inoculum level). Additionally, SigB appears to play an important role in the resistance of L. monocytogenes to GSE. The Gram-negative bacteria under study (E. coli and S. Typhimurium) were less susceptible to GSE as compared to L. monocytogenes. Our findings provide a quantitative and mechanistic understanding of the impact of GSE on the microbial dynamics of foodborne pathogens, assisting in the more systematic design of natural antimicrobial-based strategies for sustainable food safety.

3.
Wellcome Open Res ; 2: 97, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29588920

RESUMO

Background: Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be cultured ex vivo, allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM + memory B cells. Methods: Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry. Results: The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells.  Conclusions: Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.

4.
Chemphyschem ; 14(10): 2237-50, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23616388

RESUMO

The validity and accuracy of our new numerical approach implemented in KISSA-1D software when applied to a theoretical study of different types of electrochemiluminescence (ECL) is established by comparison with existing analytical solutions and others specifically derived in this work, as well as with independent numerical solutions obtained by using commercial software. The efficiency and comprehensiveness of this approach are illustrated by using a representative series of published ECL reaction schemes taken as typical case studies when ECL is generated by a single electrode under amperometric or voltammetric conditions, even when rate constants used in the simulations far exceed any of their realistic experimental limits.


Assuntos
Técnicas Eletroquímicas , Luminescência , Software , Eletrodos
5.
Anal Chem ; 84(6): 2792-8, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22379947

RESUMO

In order to successfully model an electrochemical reaction mechanism one must ensure that all the equations, including initial conditions, satisfy the pertinent thermodynamic and kinetic relationships. Failure to do so may lead to invalid results even if they are mathematically correct. This fact has been previously emphasized (Luo, W.; Feldberg, S. W.; Rudolph, M. J. Electroanal. Chem. 1994, 368, 109 - 113; Rudolph, M. Digital Simulation in Electrochemistry. In Physical Electrochemistry; Rubenstein, I., Ed.; Marcel Dekker: New York, 1995; Chapter 3) and existing computer software for electrochemical simulations, such as DigiSim (Rudolph, M.; Reddy, D. P.; Feldberg, S. W. Anal. Chem. 1994, 66, 589A; http://www.basinc.com/products/ec/digisim/), offer the option of enforcing the so-called "pre-equilibration" which evaluates thermodynamic concentrations of all species prior to beginning a voltammetric scan. Although this approach allows setting consistent thermodynamic values it may result in a nonrealistic initial concentrations set because it corresponds to the whole solution status at infinite time for infinite kinetic constants. However, the perturbation created by the working electrode poised at its rest potential is necessarily limited by the size of the electrode, reaction kinetics, and duration of the rest period. Furthermore, natural convection limits even more the importance of the perturbation. This is analyzed theoretically through comparison of simulation results by DigiSim and KISSA-1D software for certain common electrochemical mechanisms in order to illustrate the importance of correct prediction of initial concentrations.

6.
Chemphyschem ; 13(3): 845-59, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22344796

RESUMO

A new simulation algorithm is presented for describing the dynamics of diffusion reactions at the most common microelectrode 1D (planar, cylindrical, spherical) and 2D geometries (band, disk) for electrochemical mechanisms of any complexity and involving fast homogeneous reactions of any kind. A series of typical electrochemical mechanisms that create the most severe simulation difficulties is used to establish the exceptional performance and accuracy of this algorithm, which stem from the combination of (quasi)conformal transformation of space and a new method for auto-adaptive grid compression.

7.
Anal Chem ; 81(20): 8545-56, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19761227

RESUMO

This article extends our previous works (Amatore, C.; Oleinick, A.; Svir, I. Anal. Chem. 2008, 80, 7947-7956; 7957-7963.) about the effects of resistive and capacitive distortions in voltammetry at disk microelectrodes. The particular case of voltammetry of a self-assembled monolayer carrying one redox site per molecule is investigated here. In addition, the effect of an uneven distribution of the effective electrochemical potential on the possibility of electron hopping (EH) contributions is examined. An original model of EH has been developed considering both diffusion-type (i.e., related to concentration gradients) and migration-type (i.e., imposed by an uneven distribution of the electrical potential due to an ohmic drop and capacitance charging) contributions. This predicts that as soon as the system performs out of thermodynamic equilibrium and provided that the EH rate constants are not too small the system tends to re-establish its out-of-equilibrium state through EH. Hence, EH somewhat tries to compensate the voltammetric distortions that would be enforced by the uneven distribution of the electrochemical driving force incurred by the system due to an ohmic drop and capacitive charging. However, this rigorous analysis established that, though EH may be effective under specific circumstances particularly near the electrode edge, its overall influence on voltammetric waves remains negligible for any realistic experimental situation.

8.
Anal Chem ; 81(18): 7667-76, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19697937

RESUMO

In this article, the numerical approach for flow profile reconstruction in a microfluidic channel equipped with band microelectrodes introduced previously by the authors, based on transient currents, is extended to the exclusive use of steady-state currents. It is shown that, although the currents obey steady state, the flow velocity profile in the channel may be reconstructed rapidly with a high accuracy, provided a sufficient number of electrodes performing under steady state are considered. The present theory demonstrates how the electrode widths and sizes of gaps separating them can be optimized to achieve better performance of the method. This approach has been evaluated theoretically for band microelectrode arrays embedded into one wall of a rectangular channel consisting of three, four, or five electrodes, all of which are operated in the generator mode. The results prove that the proposed approach is able to accurately recover the shape of the flow profile in a wide range of Peclet numbers and flow types ranging from the classical parabolic Poiseuille flow to constant electro-osmotic-type flow.

9.
Chemphyschem ; 10(9-10): 1593-602, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-19507203

RESUMO

In this work, we illustrate two approaches to the simulation of surface diffusion over a sphere coupled with the formation of a cluster by reactive particles as a paradigm of a wide variety of problems occurring in many areas of nanosciences and biology. The problem is treated using a Brownian motion approach and a numerical solution of the corresponding continuous Fick's laws of diffusion. While being computationally more expensive, the Brownian motion approach allows one to consider a wider range of situations, particularly those corresponding to relatively high concentrations of diffusing particles and the ensuing problem of particle overlap when they are ascribed finite sizes.

10.
Chemphyschem ; 10(9-10): 1586-92, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-19475636

RESUMO

Breaking of symmetry is often required in biology in order to produce a specific function. In this work we address the problem of protein diffusion over a spherical vesicle surface towards one pole of the vesicle in order to produce ultimately an active protein cluster performing a specific biological function. Such a process is, for example, prerequisite for the assembling of proteins which then cooperatively catalyze the polymerization of actin monomers to sustain the growth of actin tails as occurs in natural vesicles such as those contained in Xenopus eggs. By this process such vesicles may propel themselves within the cell by the principle of action-reaction. In this work the physicochemical treatment of diffusion of large biomolecules within a cellular membrane is extended to encompass the case when proteins may be transiently poised by corral-like structures partitioning the membrane as has been recently documented in the literature. In such case the exchange of proteins between adjacent corrals occurs by energy-gated transitions instead of classical Brownian motion, yet the present analysis shows that long-range movements of the biomolecules may still be described by a classical diffusion law though the diffusion coefficient has then a different physical meaning. Such a model explains why otherwise classical diffusion of proteins may give rise to too small diffusion coefficients compared to predictions based on the protein dimension. This model is implemented to examine the rate of proteins clustering at one pole of a spherical vesicle and its outcome is discussed in relevance to the mechanism of actin comet tails growth.


Assuntos
Actinas/química , Membrana Celular/química , Actinas/metabolismo , Algoritmos , Animais , Membrana Celular/metabolismo , Difusão , Cinética , Óvulo , Xenopus laevis/metabolismo
11.
Anal Chem ; 80(9): 3229-43, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18366191

RESUMO

The complex problem of diffusion-reaction inside of bundles of nanopores assembled into microspherical particles is investigated theoretically based on the numerical solutions of the physicochemical equations that describe the kinetics and the thermodynamics of the phenomena taking place. These theoretical results enable the delineation of the main factors that control the system reactivity and examination of their thermodynamic and kinetic effects to afford quantitative predictions for the optimization of the particles' dimensional characteristics for a targeted application. The validity and usefulness of the theoretical approach disclosed here are established by the presentation of the complete analysis of the performance of thiol-functionalized microspheres aimed for sequestration of Hg(II) ions from solutions to be remediated. This allows the comparison of the microparticles' performance at two different pH (2 and 4) and the rationalization of the observed changes in terms of the main microscopic parameters that define the system.

12.
Chemphyschem ; 8(12): 1870-4, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17663494

RESUMO

A theoretical approach for flow profile reconstruction in a rectangular microfluidic channel equipped with one or two microband electrodes working in generator-collector and generator-generator regimes was proposed by us previously (ChemPhysChem 2005, 6, 1581-1589; ChemPhysChem 2006, 7, 482-487). The purpose of the current study is to determine the ranges of dimensionless parameters corresponding to the highest sensitivity of the minimized functional to the shape of the flow profile. By application of a cubic spline to approximate the flow profile and analysis of the least-squares functional, which can then be represented as a function of one variable, we derive the area of optimal method performance. Thus, mathematical confirmation of our previous theoretical physical predictions could be obtained.

13.
Anal Chem ; 79(16): 6341-7, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17637041

RESUMO

Mass transport at cylindrical and spherical microelectrodes involving diffusion and migration is analyzed by means of numerical simulation under transient conditions. The origin of the intrinsic difficulties encountered during the numerical solution of the diffusion-migration equations using implicit finite differences are outlined, especially for the particular case when the number of electrons transferred equals the charge number of the electroactive species. The numerical results for transient conditions have been compared to the general analytical solutions for the current enhancement or diminishment due to migration under steady- and quasi-steady-state conditions at 1D geometry microelectrodes (Amatore, C.; Fosset, B.; Bartelt, J.; Deakin, M. R.; Wightman, R. M. J. Electroanal. Chem. 1988, 256, 255-268). This yields that the analytical limiting currents are applicable, within experimental error, to the analysis of transient diffusion-migration current responses at microelectrodes of cylindrical and spherical geometries except extremely short times after the application of the potential step, i.e., when current measurements are anyway already corrupted by ohmic drop when the supporting electrolyte concentration is low. Also, this confirms that the current enhancements or diminishments due to migration are identical for both electrode geometries when steady- or quasi-steady states are approached and do not drastically differ even under transient regimes.

14.
Chemphyschem ; 8(11): 1664-76, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17615614

RESUMO

A realistic theoretical model describing the outcome of confocal microscopic imaging of electrochemiluminescence (ECL) light emission is derived for a two parallel band microelectrodes assembly operated under steady state. The model takes into account the experimental distortions ensuing from a) the specific finite shape of the sampling volume in confocal microscopy, b) the light arising directly from out-of-focus area but transmitted through the microscope diaphragm or c) transmitted after reflection from the polished platinum band electrodes. The model is based on a detailed optical, physico-mathematical and numerical analysis of the problem at hand, and on simulations of the concentration distribution of the species giving rise to the ECL generation. Its outcome allows the reconstruction of the real spatial distribution of ECL light emission based on the confocal microscopy measurements upon correcting for the effect of experimental distortions using numerical fitting procedure.

15.
Phys Chem Chem Phys ; 8(5): 633-41, 2006 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-16482305

RESUMO

A surface-controlled dissolution of cylindrical solid particles model is applied to potassium carbonate, sodium bicarbonate and sodium carbonate in dimethylformamide at elevated temperatures. Previously published data for the dissolution of potassium carbonate is interpreted assuming a cylindrical rather than a spherical shape of the particles, the former representing a closer approximation to the true shape of the particles as revealed by scanning electron microscopy. The dissolution kinetics of sodium carbonate and sodium bicarbonate in dimethylformamide at 100 degrees C were investigated via monitoring of the deprotonation of 2-cyanophenol with dissolved solid to form the 2-cyanophenolate anion that was detected with UV-visible spectroscopy. From fitting of experimental results to theory, the dissolution rate constant, k, for the dissolutions of potassium carbonate, sodium bicarbonate and sodium carbonate in dimethylformamide at 100 degrees C were found to have the values of (1.0 +/- 0.1) x 10(-7) mol cm(-2) s(-1), (5.5 +/- 0.3) x 10(-9) mol cm(-2) s(-1) and (9.7 +/- 0.8) x 10(-9) mol cm(-2) s(-1), respectively.


Assuntos
Carbonatos/química , Química Farmacêutica , Dimetilformamida/química , Potássio/química , Bicarbonato de Sódio/química , Adsorção , Difusão , Cinética , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Fenóis/química , Solubilidade , Espectrofotometria Ultravioleta , Temperatura
16.
Math Med Biol ; 23(1): 27-44, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16495334

RESUMO

The physicochemical process of nitric oxide (NO degrees ) release from an active neuron is modelled based on the results obtained experimentally in independent series of experiments reported elsewhere in which the NO degrees release elicited by patch-clamping a single neuron (stellate neuron from cerebellum area) is monitored by an ultramicroelectrode introduced into a slice of living rat's brain. This process is believed to be central to brain behaviour by coupling neuronal activity with the blood supply to active areas of the living brain through precise control of NO degrees -mediated dilatation of blood capillary vessels. This work, based on the conformal mapping approach initially proposed in a previous work, aims to model the overall physicochemical and diffusional processes giving rise to the release of NO degrees by a neuron and during its collection at an electrode sensor. Fitting simulated currents to experimental ones published previously yields indeed the gross kinetic information which represents the overall neuron activation and defines the instant value of the concentration of NO degrees at the neuron surface. This allows reconstructing the NO degrees fluxes around the neuron body as they would have been in the absence of the electrode sensor. This permits one to appreciate how far NO degrees is released by the neuron at concentrations which greatly exceed their basal values. The success of this procedure is exemplified using a set of three experimental data reported elsewhere.


Assuntos
Encéfalo/metabolismo , Modelos Neurológicos , Neurônios Nitrérgicos/metabolismo , Óxido Nítrico/metabolismo , Animais , Simulação por Computador , Hiperemia/fisiopatologia , Ratos
17.
Chemphyschem ; 7(2): 482-7, 2006 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-16463337

RESUMO

Herein, we extend our previous approach concerning the reconstruction of profiles of pressure-driven hydrodynamic flow in microfluidic channels based on current measurements at band electrode(s) [see the preceding paper ChemPhysChem 2005, 6, 1581]. We address the central issue of optimization of geometrical parameters describing the electrode(s) assembly (a single band and two bands working in generator-collector mode) within the channel flow cell to enhance the speed and precision of the flow profile reconstruction method.

18.
Chemphyschem ; 6(8): 1581-9, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16082662

RESUMO

Herein, we propose a method for reconstructing any plausible macroscopic hydrodynamic flow profile occurring locally within a rectangular microfluidic channel. The method is based on experimental currents measured at single or double microband electrodes embedded in one channel wall. A perfectly adequate quasiconformal mapping of spatial coordinates introduced in our previous work [Electrochem. Commun. 2004, 6, 1123] and an exponentially expanding time grid, initially proposed [J. Electroanal. Chem. 2003, 557, 75] in conjunction with the solution of the corresponding variational problem approached by the Ritz method are used for the numerical reconstruction of flow profiles. Herein, the concept of the method is presented and developed theoretically and its validity is tested on the basis of the use of pseudoexperimental currents emulated by simulation of the diffusion-convection problem in a channel flow cell, to which a random Gaussian current noise is added. The flow profiles reconstructed by our method compare successfully with those introduced a priori into the simulations, even when these include significant distortions compared with either classical Poiseuille or electro-osmotic flows.

19.
Chemphyschem ; 6(3): 526-33, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15799479

RESUMO

Measurements on the diffusion coefficient of the neutral molecule N,N,N',N'-tetramethyl-para-phenylenediamine and the radical cation and dication generated by its one- and two-electron oxidation, respectively, are reported over the range 298-348 K in both acetonitrile and four room temperature ionic liquids (RTILs). Data were collected using single and double potential step chronoamperometry at a gold disk electrode of micrometer dimension, and analysed via fitting to the appropriate analytical expression or, where necessary, to simulation. The variation of diffusion coefficient with temperature was found to occur in an Arrhenius-type manner for all combinations of solute and solvent. For a given ionic liquid, the diffusional activation energies of each species were not only closely equivalent to each other, but also to the RTIL's activation energy of viscous flow. In acetonitrile supported with 0.1 M tetrabutylammonium perchlorate, the ratio in diffusion coefficients of the radical cation and dication to the neutral molecule were calculated as 0.89 +/- 0.05 and 0.51 +/- 0.03, respectively. In contrast, amongst the ionic liquids the same ratios were determined to be on average 0.53 +/- 0.04 and 0.33 +/- 0.03. The consequences of this dissimilarity are considered in terms of the modelling of voltammetric data gathered within ionic liquid solvents.

20.
J Phys Chem B ; 109(7): 2862-72, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16851298

RESUMO

We present a mathematical model for the surface-controlled dissolution of solid particles. This is applied to the dissolution of a solid having different particle size distribution functions: those of a monodispersed solid containing particles of all one size, a two-size-particle distribution, and a Gaussian distribution of the particle sizes. The dissolution of potassium bicarbonate in dimethylformamide is experimentally studied indirectly at elevated temperatures. We monitor the dissolution via the homogeneous deprotonation of 2-cyanophenol by dissolved KHCO3. The loss of 2-cyanophenol was detected electrochemically at a platinum microdisk electrode, and separately, the formation of the 2-cyanophenolate anion was monitored via UV-visible spectroscopic analysis. The results presented show that the kinetics of the loss of 2-cyanophenol behaves on one hand as a homogeneous chemical process and on the other hand as a dissolution-rate-controlled process. Initially, predissolved KHCO3 in solution deprotonates the 2-cyanophenol and homogeneous reaction dominates the observed kinetics, and at longer times, the observed kinetics is controlled by the rate of KHCO3 dissolution. Modeling of the experimental results for the surface-controlled dissolution of KHCO3 in dimethylformamide (DMF) yielded a mean value for the dissolution rate constant, k, at elevated temperatures; k was found to have a value of (1.1 +/- 0.3) x 10(-8) mol cm(-2) s(-1) at 100 degrees C, and the activation energy for the dissolution was 34.4 +/- 0.4 kJ mol(-1) over the temperature range 60-100 degrees C.


Assuntos
Bicarbonatos/química , Dimetilformamida/química , Compostos de Potássio/química , Biofísica/métodos , Eletroquímica , Temperatura Alta , Cinética , Modelos Químicos , Modelos Estatísticos , Distribuição Normal , Fenóis/química , Platina/química , Solubilidade , Espectrofotometria Ultravioleta , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA