Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Trends Biochem Sci ; 47(3): 218-234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34810080

RESUMO

To thrive and to fulfill their functions, cells need to maintain proteome homeostasis even in the face of adverse environmental conditions or radical restructuring of the proteome during differentiation. At the center of the regulation of proteome homeostasis is an ancient transcriptional mechanism, the so-called heat shock response (HSR), orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). As Hsf1 is implicated in aging and several pathologies like cancer and neurodegenerative disorders, understanding the regulation of Hsf1 could open novel therapeutic opportunities. In this review, we discuss the regulation of Hsf1's transcriptional activity by multiple layers of control circuits involving Hsf1 synthesis and degradation, conformational rearrangements and post-translational modifications (PTMs), and molecular chaperones in negative feedback loops.


Assuntos
Resposta ao Choque Térmico , Fatores de Transcrição , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
3.
J Biol Chem ; 296: 100324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493517

RESUMO

The heat shock response is a transcriptional program of organisms to counteract an imbalance in protein homeostasis. It is orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). Despite very intensive research, the intricacies of the Hsf1 activation-attenuation cycle remain elusive at a molecular level. Post-translational modifications belong to one of the key mechanisms proposed to adapt the Hsf1 activity to the needs of individual cells, and phosphorylation of Hsf1 at multiple sites has attracted much attention. According to cell biological and proteomics data, Hsf1 is also modified by small ubiquitin-like modifier (SUMO) at several sites. How SUMOylation affects Hsf1 activity at a molecular level is still unclear. Here, we analyzed Hsf1 SUMOylation in vitro with purified components to address questions that could not be answered in cell culture models. In vitro Hsf1 is primarily conjugated at lysine 298 with a single SUMO, though we did detect low-level SUMOylation at other sites. Different SUMO E3 ligases such as protein inhibitor of activated STAT 4 enhanced the efficiency of in vitro modification but did not alter SUMO site preferences. We provide evidence that Hsf1 trimerization and phosphorylation at serines 303 and 307 increases SUMOylation efficiency, suggesting that Hsf1 is SUMOylated in its activated state. Hsf1 can be SUMOylated when DNA bound, and SUMOylation of Hsf1 does neither alter DNA-binding affinity nor affects heat shock cognate 71kDa protein (HSPA8)+DnaJ homolog subfamily B member 1-mediated monomerization of Hsf1 trimers and concomitant dislocation from DNA. We propose that SUMOylation acts at the transcription level of the heat shock response.


Assuntos
Proteínas de Choque Térmico HSC70/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Fator de Transcrição STAT4/genética , Sumoilação/genética , Proteínas de Ligação a DNA/genética , Resposta ao Choque Térmico/fisiologia , Homeostase/genética , Humanos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional/genética , Estresse Fisiológico/genética , Enzimas Ativadoras de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
4.
EMBO J ; 39(14): e104096, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32490574

RESUMO

The heat shock response is a universal transcriptional response to proteotoxic stress orchestrated by heat shock transcription factor Hsf1 in all eukaryotic cells. Despite over 40 years of intense research, the mechanism of Hsf1 activity regulation remains poorly understood at the molecular level. In metazoa, Hsf1 trimerizes upon heat shock through a leucine-zipper domain and binds to DNA. How Hsf1 is dislodged from DNA and monomerized remained enigmatic. Here, using purified proteins, we demonstrate that unmodified trimeric Hsf1 is dissociated from DNA in vitro by Hsc70 and DnaJB1. Hsc70 binds to multiple sites in Hsf1 with different affinities. Hsf1 trimers are monomerized by successive cycles of entropic pulling, unzipping the triple leucine-zipper. Starting this unzipping at several protomers of the Hsf1 trimer results in faster monomerization. This process directly monitors the concentration of Hsc70 and DnaJB1. During heat shock adaptation, Hsc70 first binds to a high-affinity site in the transactivation domain, leading to partial attenuation of the response, and subsequently, at higher concentrations, Hsc70 removes Hsf1 from DNA to restore the resting state.


Assuntos
DNA , Proteínas de Choque Térmico HSC70 , Fatores de Transcrição de Choque Térmico , Multimerização Proteica , Animais , Linhagem Celular , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Camundongos , Camundongos Knockout , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA