Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 93: 752-762, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31163297

RESUMO

The West Coast rock lobster (WCRL), Jasus lalandii, inhabits highly variable environments frequented by upwelling events, episodes of hypercapnia and large temperature variations. Coupled with the predicted threat of ocean acidification and temperature change for the coming centuries, the immune response in this crustacean will most likely be affected. We therefore tested the hypothesis that chronic exposure to hypercapnia and elevated seawater temperature will alter immune function of the WCRL. The chronic effects of four combinations of two stressors (seawater pCO2 and temperature) on the total number of circulating haemocytes (THC) as well as on the lobsters' ability to clear (inactivate) an injected dose of Vibrio anguillarum from haemolymph circulation were assessed. Juvenile lobsters were held in normocapnic (pH 8.01) or hypercapnic (pH 7.34) conditions at two temperatures (15.6 and 18.9 °C) for 48 weeks (n = 30 lobster per treatment), after which a subsample of lobsters (n = 8/treatment), all at a similar moult stage, were selected from each treatment for the immune challenge. Baseline levels of haemocytes (THC ml-1) and bacteria (CFU ml-1) in their haemolymph were quantified 24 h prior to bacterial challenge. Lobsters were then challenged by injecting 4 × 104V. anguillarum per g body weight directly into the cardiac region of each lobster and circulating haemocyte and culturable bacteria were measured at 20 min post challenge. No significant differences in THC ml-1 (p < 0.05) were observed between any of the treatment groups prior to the bacterial challenge. However lobsters chronically exposed to a combination of hypercapnia and low temperature had significantly higher (p < 0.05) THCs post-challenge in comparison with lobsters chronically exposed to hypercapnia and high temperature. A significant interactive effect was recorded between temperature and pH for the post-challenge THC data (two-way ANOVA, p = 0.0025). Lobster were very efficient at rendering an injected dose of bacteria non-culturable, with more than 83% of the theoretical challenge dose (∼1.7 × 105Vibrio ml-1 haemolymph) inactivated within the first 10 min following injection. Although differences in the inactivation of V. anguillarum were observed between treatment groups, none of these differences were significant. Clearance efficiency was in the following order: Hypercapnia/low temperature > normocapnia/high temperature > normocapnia/low temperature > hypercapnia/high temperature. This study demonstrated that despite chronic exposure to combinations of reduced seawater pH and high temperature, the WCRL was still capable of rapidly rendering an injected dose of bacteria non-culturable.


Assuntos
Dióxido de Carbono/sangue , Hemolinfa/química , Imunidade Inata/fisiologia , Palinuridae/imunologia , Animais , Temperatura Alta/efeitos adversos , Concentração de Íons de Hidrogênio , Palinuridae/química , Palinuridae/fisiologia , Água do Mar/química
2.
Biochem Biophys Res Commun ; 461(3): 475-80, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25871793

RESUMO

Few studies exist reporting on long-term exposure of crustaceans to hypercapnia. We exposed juvenile South African rock lobsters, Jasus lalandii, to hypercapnic conditions of pH 7.3 for 28 weeks and subsequently analysed changes in the extracellular fluid (haemolymph). Results revealed, for the first time, adjustments in the haemolymph of a palinurid crustacean during chronic hypercapnic exposure: 1) acid-base balance was adjusted and sustained by increased bicarbonate and 2) quantity and oxygen binding properties of haemocyanin changed. Compared with lobsters kept under normocapnic conditions (pH 8.0), during prolonged hypercapnia, juvenile lobsters increased bicarbonate buffering of haemolymph. This is necessary to provide optimum pH conditions for oxygen binding of haemocyanin and functioning of respiration in the presence of a strong Bohr Effect. Furthermore, modification of the intrinsic structure of the haemocyanin molecule, and not the presence of molecular modulators, seems to improve oxygen affinity under conditions of elevated pCO2.


Assuntos
Equilíbrio Ácido-Base , Crustáceos/metabolismo , Hemolinfa/metabolismo , Hipercapnia/sangue , Animais , Doença Crônica , Hemocianinas/metabolismo , Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA