RESUMO
Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Assuntos
ADP Ribose Transferases , Toxinas Bacterianas , Membrana Celular , Clostridium/enzimologia , Proteínas Citotóxicas Formadoras de Poros , Multimerização Proteica , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismoRESUMO
BACKGROUND AND PURPOSE: Voltage-gated sodium channels are expressed primarily in excitable cells and play a pivotal role in the initiation and propagation of action potentials. Nine subtypes of the pore-forming α-subunit have been identified, each with a distinct tissue distribution, biophysical properties and sensitivity to tetrodotoxin (TTX). Na(v) 1.8, a TTX-resistant (TTX-R) subtype, is selectively expressed in sensory neurons and plays a pathophysiological role in neuropathic pain. In comparison with TTX-sensitive (TTX-S) Na(v) α-subtypes in neurons, Na(v) 1.8 is most strongly inhibited by the µO-conotoxin MrVIB from Conus marmoreus. To determine which domain confers Na(v) 1.8 α-subunit its biophysical properties and MrVIB binding, we constructed various chimeric channels incorporating sequence from Na(v) 1.8 and the TTX-S Na(v) 1.2 using a domain exchange strategy. EXPERIMENTAL APPROACH: Wild-type and chimeric Na(v) channels were expressed in Xenopus oocytes, and depolarization-activated Na⺠currents were recorded using the two-electrode voltage clamp technique. KEY RESULTS: MrVIB (1 µM) reduced Na(v) 1.2 current amplitude to 69 ± 12%, whereas Na(v) 1.8 current was reduced to 31 ± 3%, confirming that MrVIB has a binding preference for Na(v) 1.8. A similar reduction in Na⺠current amplitude was observed when MrVIB was applied to chimeras containing the region extending from S6 segment of domain I through the S5-S6 linker of domain II of Na(v) 1.8. In contrast, MrVIB had only a small effect on Na⺠current for chimeras containing the corresponding region of Na(v) 1.2. CONCLUSIONS AND IMPLICATIONS: Taken together, these results suggest that domain II of Na(v) 1.8 is an important determinant of MrVIB affinity, highlighting a region of the α-subunit that may allow further nociceptor-specific ligand targeting.