RESUMO
BACKGROUND: The antitumor efficacy of PARP inhibitors (PARPi) for breast cancer patients harboring germline BRCA1/2 (gBRCA1/2) mutations is well established. While PARPi monotherapy was ineffective in patients with metastatic triple negative breast cancer (TNBC) wild type for BRCA1/2, we hypothesized that PARPi may be effective in primary TNBCs without previous chemotherapy exposure. PATIENTS AND METHODS: In the phase II PETREMAC trial, patients with primary TNBC >2 cm received olaparib for up to 10 weeks before chemotherapy. Tumor biopsies collected before and after olaparib underwent targeted DNA sequencing (360 genes) and BRCA1 methylation analyses. In addition, BRCAness (multiplex ligation-dependent probe amplification), PAM50 gene expression, RAD51 foci, tumor-infiltrating lymphocytes (TILs) and PD-L1 analyses were performed on pretreatment samples. RESULTS: The median pretreatment tumor diameter was 60 mm (range 25-112 mm). Eighteen out of 32 patients obtained an objective response (OR) to olaparib (56.3%). Somatic or germline mutations affecting homologous recombination (HR) were observed in 10/18 responders [OR 55.6%, 95% confidence interval (CI) 33.7-75.4] contrasting 1/14 non-responders (OR 7.1%; CI 1.3-31.5, P = 0.008). Among tumors without HR mutations, 6/8 responders versus 3/13 non-responders revealed BRCA1 hypermethylation (P = 0.03). Thus, 16/18 responders (88.9%, CI 67.2-96.9), in contrast to 4/14 non-responders (28.6%, CI 11.7-54.7, P = 0.0008), carried HR mutations and/or BRCA1 methylation. Excluding one gPALB2 and four gBRCA1/2 mutation carriers, 12/14 responders (85.7%, CI 60.1-96.0) versus 3/13 non-responders (23.1%, CI 8.2-50.3, P = 0.002) carried somatic HR mutations and/or BRCA1 methylation. In contrast to BRCAness signature or basal-like subtype, low RAD51 scores, high TIL or high PD-L1 expression all correlated to olaparib response. CONCLUSION: Olaparib yielded a high clinical response rate in treatment-naïve TNBCs revealing HR deficiency, beyond germline HR mutations. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02624973.
Assuntos
Neoplasias de Mama Triplo Negativas , Proteína BRCA1/genética , Humanos , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
Genomic alterations occurring during melanoma progression and the resulting genomic heterogeneity between metastatic deposits remain incompletely understood. Analyzing 86 metastatic melanoma deposits from 53 patients with whole-exome sequencing (WES), we show a low branch to trunk mutation ratio and little intermetastatic heterogeneity, with driver mutations almost completely shared between lesions. Branch mutations consistent with UV damage indicate that metastases may arise from different subclones in the primary tumor. Selective gain of mutated BRAF alleles occurs as an early event, contrasting whole-genome duplication (WGD) occurring as a late truncal event in about 40% of cases. One patient revealed elevated mutational diversity, probably related to previous chemotherapy and DNA repair defects. In another patient having received radiotherapy toward a lymph node metastasis, we detected a radiotherapy-related mutational signature in two subsequent distant relapses, consistent with secondary metastatic seeding. Our findings add to the understanding of genomic evolution in metastatic melanomas.
Assuntos
Genômica/métodos , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Progressão da Doença , Feminino , Heterogeneidade Genética , Genoma Humano/genética , Humanos , Masculino , Melanoma/patologia , Melanoma/terapia , Metástase Neoplásica , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Sequenciamento do Exoma/métodosRESUMO
Although new agents are implemented to cancer therapy, we lack fundamental understandings of the mechanisms of chemoresistance, the main obstacle to cure in cancer. Here we review clinical evidence linking molecular defects to drug resistance across different tumour forms and discuss contemporary experimental evidence exploring these mechanisms. Although evidence, in general, is sparse and fragmentary, merging knowledge links drug resistance, and also sensitivity, to defects in functional pathways having a key role in cell growth arrest or death and DNA repair. As these pathways may act in concert, there is a need to explore multiple mechanisms in parallel. Taking advantage of massive parallel sequencing and other novel high-throughput technologies and base research on biological hypotheses, we now have the possibility to characterize functional defects related to these key pathways and to design a new generation of studies identifying the mechanisms controlling resistance to different treatment regimens in different tumour forms.
Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Reparo do DNA/genética , Humanos , Neoplasias/genética , PrognósticoRESUMO
The wild-type tumor-suppressor gene TP53 encodes several isoforms of the p53 protein. However, while the role of p53 in controlling normal cell cycle progression and tumor suppression is well established, the clinical significance of p53 isoform expression is unknown. A novel bioinformatic analysis of p53 isoform expression in 68 patients with acute myeloid leukemia revealed distinct p53 protein biosignatures correlating with clinical outcome. Furthermore, we show that mutated FLT3, a prognostic marker for short survival in AML, is associated with expression of full-length p53. In contrast, mutated NPM1, a prognostic marker for long-term survival, correlated with p53 isoforms ß and γ expression. In conclusion, p53 biosignatures contain useful information for cancer evaluation and prognostication.
Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Proteína Supressora de Tumor p53/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Feminino , Regulação Neoplásica da Expressão Gênica , Genes p53 , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Nucleofosmina , Prognóstico , Isoformas de Proteínas/metabolismoRESUMO
Although TP53 mutations are rare in acute myeloid leukemia (AML), wild type p53 function is habitually annulled through overexpression of MDM2 or through various mechanisms including epigenetic silencing by histone deacetylases (HDACs). We hypothesized that co-inhibition of MDM2 and HDACs, with nutlin-3 and valproic acid (VPA) would additively inhibit growth in leukemic cells expressing wild type TP53 and induce p53-mediated apoptosis. In vitro studies with the combination demonstrated synergistic induction of apoptosis in AML cell lines and patient cells. Nutlin-3 and VPA co-treatment resulted in massive induction of p53, acetylated p53 and p53 target genes in comparison with either agent alone, followed by p53 dependent cell death with autophagic features. In primary AML cells, inhibition of proliferation by the combination therapy correlated with the CD34 expression level of AML blasts. To evaluate the combination in vivo, we developed an orthotopic, NOD/SCID IL2rγ(null) xenograft model of MOLM-13 (AML FAB M5a; wild type TP53) expressing firefly luciferase. Survival analysis and bioluminescent imaging demonstrated the superior in vivo efficacy of the dual inhibition of MDM2 and HDAC in comparison with controls. Our results suggest the concomitant targeting of MDM2-p53 and HDAC inhibition, may be an effective therapeutic strategy for the treatment of AML.
Assuntos
Apoptose/efeitos dos fármacos , Genes p53 , Imidazóis/farmacologia , Leucemia Mieloide Aguda/patologia , Piperazinas/farmacologia , Ácido Valproico/farmacologia , Acetilação , Animais , Antígenos CD34/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Eletrônica de Transmissão , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidoresRESUMO
BACKGROUND: We have previously described the essential role of the retinoid-inducible nuclear factor (RINF) during differentiation of hematopoietic cells and suggested its putative involvement in myeloid leukemia and preleukemia. Here, we have investigated whether this gene could have a deregulated expression in malignant tissues compared with their normal tissues of origin and if this potential deregulation could be associated with important clinicopathological parameters. PATIENTS AND METHODS: RINF messenger RNA expression was examined in biopsies from locally advanced breast tumors, metastatic malignant melanomas, and papillary thyroid carcinomas and compared with their paired or nonpaired normal reference samples. Further, the prognostic role of RINF expression was evaluated in locally advanced breast cancer. RESULTS: RINF expression was significantly higher in all tumor forms (primary breast, and thyroid cancers and metastatic melanomas) as compared with normal control tissues (P < 0.001 for each comparison). Importantly, high levels of RINF expression correlated to a poor overall survival in breast cancer (P = 0.013). This finding was confirmed in three independent public microarray datasets (P = 0.043, n = 234; P = 0.016, n = 69; P = 0.001, n = 196) and was independent of tamoxifen therapy. Notably, high levels of RINF was strongly associated with TP53 wild-type status (P = 0.002) possibly indicating that high levels of RINF could substitute for TP53 mutations as an oncogenic mechanism during the malignant development of some cases of breast cancer. CONCLUSIONS: Our data indicate that (i) RINF overexpression is associated with the malignant phenotype in solid tumors and (ii) RINF overexpression represents an independent molecular marker for poor prognosis in breast tumors.
Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/metabolismo , Proteínas de Transporte/biossíntese , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma , Carcinoma Papilar , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Feminino , Dosagem de Genes , Genes p53 , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Mutação , Prognóstico , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fatores de Transcrição , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genéticaRESUMO
Expanding knowledge, together with implementation of new techniques, has fuelled the area of translational medical research aiming at improving prognostication as well as prediction in cancer therapy. At the same time, new discoveries have revealed a biological complexity we were unaware of only a decade ago. Thus, we are faced with novel challenges with respect to how we may explore issues such as prognostication and predict drug resistance in vivo. While microarray analysis exploring expression of thousands of genes in concert represents a major methodological advancement, discoveries such as the finding of different mechanisms of epigenetic silencing, intronic mutations, that most gene transcripts in the human genome are subject to alternative splicing and that hypersplicing seems to be a tumour-related phenomenon, exemplifies a complex pathology that may not be explored with use of single analytical methods only. This paper discusses clinical settings for studying drug resistance in vivo together with a discussion of contemporary biology in this field. Notably, each individual parameter which has been found correlated to drug resistance in vivo so far represents either a direct drug target or a factor involved in DNA repair or apoptosis. On the basis of these findings, we suggest drug resistance may be explored on the basis of upfront biological hypotheses.