Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Neurol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743089

RESUMO

BACKGROUND: While retinal vessel changes are evident in the eyes of patients with relapsing-remitting multiple sclerosis (RRMS), changes in the vasculature of possible MS mimics such as primary Sjögren's syndrome (pSS) remain to be determined. We investigated the potential of retinal optical coherence tomography (OCT) angiography (OCTA) as diagnostic tool to differentiate between patients with RRMS and pSS. METHODS: This cross-sectional study included patients with RRMS (n = 36), pSS (n = 36) and healthy controls (n = 30). Participants underwent clinical examination, assessment of visual acuity, retinal OCT, OCTA, and serum markers of glial and neuronal damage. We investigated the associations between OCTA parameters, visual functions, and serum markers. Eyes with a history of optic neuritis (ON) were excluded from analysis. RESULTS: We observed a significant thinning of the combined ganglion cell and inner plexiform layer in the eyes of patients with RRMS but not with pSS, when compared to healthy controls. Retinal vessel densities of the superficial vascular complex (SVC) were reduced in both patients with RRMS and pSS. However, retinal vessel rarefication of the deep vascular complex (DVC) was only evident in patients with pSS but not RRMS. Using multivariate regression analysis, we found that DVC vessel loss in pSS patients was associated with worse visual acuity. CONCLUSIONS: Compared to patients with RRMS, rarefication of deep retinal vessels is a unique characteristic of pSS and associated with worse visual function. Assuming a disease-specific retinal vessel pathology, these data are indicative of a differential affliction of the gliovascular complex in the retina of RRMS and pSS patients.

2.
IEEE Trans Med Imaging ; PP2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224512

RESUMO

Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that can acquire high-resolution volumes of the retinal vasculature and aid the diagnosis of ocular, neurological and cardiac diseases. Segmenting the visible blood vessels is a common first step when extracting quantitative biomarkers from these images. Classical segmentation algorithms based on thresholding are strongly affected by image artifacts and limited signal-to-noise ratio. The use of modern, deep learning-based segmentation methods has been inhibited by a lack of large datasets with detailed annotations of the blood vessels. To address this issue, recent work has employed transfer learning, where a segmentation network is trained on synthetic OCTA images and is then applied to real data. However, the previously proposed simulations fail to faithfully model the retinal vasculature and do not provide effective domain adaptation. Because of this, current methods are unable to fully segment the retinal vasculature, in particular the smallest capillaries. In this work, we present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis. We then introduce three contrast adaptation pipelines to decrease the domain gap between real and artificial images. We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets that compare our method to traditional computer vision algorithms and supervised training using human annotations. Finally, we make our entire pipeline publicly available, including the source code, pretrained models, and a large dataset of synthetic OCTA images.

3.
Front Immunol ; 14: 1284986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090586

RESUMO

Background: Optical coherence tomography angiography (OCTA) allows non-invasive assessment of retinal vessel structures. Thinning and loss of retinal vessels is evident in eyes of patients with multiple sclerosis (MS) and might be associated with a proinflammatory disease phenotype and worse prognosis. We investigated whether changes of the retinal vasculature are linked to brain atrophy and disability in MS. Material and methods: This study includes one longitudinal observational cohort (n=79) of patients with relapsing-remitting MS. Patients underwent annual assessment of the expanded disability status scale (EDSS), timed 25-foot walk, symbol digit modalities test (SDMT), retinal optical coherence tomography (OCT), OCTA, and brain MRI during a follow-up duration of at least 20 months. We investigated intra-individual associations between changes in the retinal architecture, vasculature, brain atrophy and disability. Eyes with a history of optic neuritis (ON) were excluded. Results: We included 79 patients with a median disease duration of 12 (interquartile range 2 - 49) months and a median EDSS of 1.0 (0 - 2.0). Longitudinal retinal axonal and ganglion cell loss were linked to grey matter atrophy, cortical atrophy, and volume loss of the putamen. We observed an association between vessel loss of the superficial vascular complex (SVC) and both grey and white matter atrophy. Both observations were independent of retinal ganglion cell loss. Moreover, patients with worsening of the EDSS and SDMT revealed a pronounced longitudinal rarefication of the SVC and the deep vascular complex. Discussion: ON-independent narrowing of the retinal vasculature might be linked to brain atrophy and disability in MS. Our findings suggest that retinal OCTA might be a new tool for monitoring neurodegeneration during MS.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Doenças Neurodegenerativas , Neurite Óptica , Humanos , Atrofia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças do Sistema Nervoso Central/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Doenças Neurodegenerativas/patologia , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/patologia , Retina/diagnóstico por imagem , Retina/patologia , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Estudos Longitudinais
4.
Artigo em Inglês | MEDLINE | ID: mdl-38041762

RESUMO

Since widespread vaccination against COVID-19, the development of effective antiviral drugs, and the decreasing number of patients with COVID-19 in intensive care, the risk from SARS-CoV-2 infection appears less threatening. However, studies show that a significant number of patients suffer from long-term sequelae, even months after SARS-CoV-2 infection. The so-called post-COVID syndrome (PCS) often presents a diagnostic and treatment challenge for physicians. This study protocol describes the "All Eyes on PCS" study, which aims to investigate the retinal microvasculature in PCS patients and COVID-19-recovered patients to provide new insights into the pathophysiology of PCS. "All Eyes on PCS" is a prospective, case-control study with the primary objective of detecting endothelial dysfunction (ED) in patients with PCS. Therefore, we intend to recruit patients with PCS, fully SARS-CoV-2-infection-recovered (CR) participants, and SARS-CoV-2-infection-naïve (CN) participants. Baseline measurements will include: (1) patient-specific characteristics, (2) biochemistry, (3) retinal vessel analysis (RVA), (4) survey questionnaires as patient-reported outcomes measurements (PROMs), (5) optical coherence tomography (OCT), OCT angiography (OCTA), and adaptive optics (AO), (6) blood pressure recordings, (7) handgrip strength test. After 6 months, baseline measurements will be repeated in the PCS cohort, and after 1 year, a telephone query will be conducted to assess residual symptoms and treatment needs. The aim of this study is to gain insight into the pathophysiology of PCS and to provide an objective biomarker for diagnosis and treatment, while also creating a comprehensive clinical database of PCS patients.ClinicalTrials.gov Identifier: NCT05635552; Date: 2.12.2022.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37813596

RESUMO

BACKGROUND AND OBJECTIVES: Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. METHODS: To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. RESULTS: We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (κ 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (κ 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. DISCUSSION: We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies.


Assuntos
Vasos Retinianos , Tomografia de Coerência Óptica , Humanos , Consenso , Angiofluoresceinografia/métodos , Retina/diagnóstico por imagem
6.
Eur J Neurol ; 30(4): 982-990, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635219

RESUMO

BACKGROUND AND PURPOSE: Thinning of the retinal combined ganglion cell and inner plexiform layer (GCIP) as measured by optical coherence tomography (OCT) is a common finding in patients with multiple sclerosis. This study aimed to investigate whether a single retinal OCT analysis allows prediction of future disease activity after a first demyelinating event. METHODS: This observational cohort study included 201 patients with recently diagnosed clinically isolated syndrome or relapsing-remitting multiple sclerosis from two German tertiary referral centers. Individuals underwent neurological examination, magnetic resonance imaging, and OCT at baseline and at yearly follow-up visits. RESULTS: Patients were included at a median disease duration of 2.0 months. During a median follow-up of 59 (interquartile range = 43-71) months, 82% of patients had ongoing disease activity as demonstrated by failing the no evidence of disease activity 3 (NEDA-3) criteria, and 19% presented with confirmed disability worsening. A GCIP threshold of ≤77 µm at baseline identified patients with a high risk for NEDA-3 failure (hazard ratio [HR] = 1.7, 95% confidence interval [CI] = 1.1-2.8, p = 0.04), and GCIP measures of ≤69 µm predicted disability worsening (HR = 2.2, 95% CI = 1.2-4.3, p = 0.01). Higher rates of annualized GCIP loss increased the risk for disability worsening (HR = 2.5 per 1 µm/year increase of GCIP loss, p = 0.03). CONCLUSIONS: Ganglion cell thickness as measured by OCT after the initial manifestation of multiple sclerosis may allow early risk stratification as to future disease activity and progression.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Células Ganglionares da Retina/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla/patologia , Retina/patologia , Estudos de Coortes , Tomografia de Coerência Óptica/métodos
7.
J Neurol ; 270(2): 1135-1140, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36245037

RESUMO

BACKGROUND: Peripapillary hyperreflective ovoid mass-like structures (PHOMS) have recently been described as new optical coherence tomography (OCT) marker. It is not yet clear whether the occurrence of PHOMS is disease-specific or disease-spanning. PHOMS have been described in 16-18% of patients with multiple sclerosis (MS). Currently, no data on the prevalence of PHOMS in other demyelinating diseases including aquaporine-4-IgG-positive neuromyelitis optica spectrum disease (AQP4 + NMOSD) or myelin oligodendrocyte glycoprotein-IgG-associated disease (MOGAD) are reported. METHODS: We performed a cross-sectional, retrospective spectral domain OCT study evaluating the frequency of PHOMS in AQP4 + NMOSD (n = 47) and MOGAD (n = 44) patients. To test the association with retinal neuroaxonal damage, we compared demographic and clinical data as well as retinal layer thicknesses between eyes with vs. eyes without PHOMS. RESULTS: PHOMS were detected in 17% of AQP4 + NMOSD and 14% of MOGAD patients. Intra-cohort analysis revealed that AQP4 + NMOSD patients with PHOMS were significantly older [mean (years): 57.5 vs. 50.0; p value = 0.04]. We found no association of PHOMS with retinal neuroaxonal degeneration. In addition, in subjects with only one eye affected by PHOMS compared with the unaffected fellow eye, no differences in retinal parameters were observed (n = 4). CONCLUSIONS: In summary, we found PHOMS in 17% of AQP4 + NMOSD and 14% of MOGAD patients. This is comparable to the prevalence of published MS PHOMS data. Therefore, a disease-specific occurrence of PHOMS is unlikely. Interestingly, PHOMS do not seem to depend on retinal neuroaxonal degeneration.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Degeneração Retiniana , Humanos , Neuromielite Óptica/diagnóstico por imagem , Aquaporina 4 , Estudos Retrospectivos , Estudos Transversais , Glicoproteína Mielina-Oligodendrócito , Esclerose Múltipla/diagnóstico por imagem , Imunoglobulina G , Autoanticorpos
9.
Front Immunol ; 13: 997043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439131

RESUMO

Background: Optical coherence tomography angiography (OCT-A) is a novel technique allowing non-invasive assessment of the retinal vasculature. During relapsing remitting multiple sclerosis (RRMS), retinal vessel loss occurs in eyes suffering from acute optic neuritis and recent data suggest that retinal vessel loss might also be evident in non-affected eyes. We investigated whether alterations of the retinal vasculature are linked to the intrathecal immunity and whether they allow prognostication of the future disease course. Material and methods: This study includes two different patient cohorts recruited at a tertiary German academic multiple sclerosis center between 2018 and 2020 and a cohort of 40 healthy controls. A total of 90 patients with RRMS undergoing lumbar puncture and OCT-A analysis were enrolled into a cross-sectional cohort study to search for associations between the retinal vasculature and the intrathecal immune compartment. We recruited another 86 RRMS patients into a prospective observational cohort study who underwent clinical examination, OCT-A and cerebral magnetic resonance imaging at baseline and during annual follow-up visits to clarify whether alterations of the retinal vessels are linked to RRMS disease activity. Eyes with a history of optic neuritis were excluded from the analysis. Results: Rarefication of the superficial vascular complex occured during RRMS and was linked to higher frequencies of activated B cells and higher levels of the pro-inflammatory cytokines interferon-γ, tumor necrosis factor α and interleukin-17 in the cerebrospinal fluid. During a median follow-up of 23 (interquartile range 14 - 25) months, vessel loss within the superficial (hazard ratio [HR] 1.6 for a 1%-point decrease in vessel density, p=0.01) and deep vascular complex (HR 1.6 for a 1%-point decrease, p=0.05) was associated with future disability worsening. Discussion: Optic neuritis independent rarefication of the retinal vasculature might be linked to neuroinflammatory processes during RRMS and might predict a worse disease course. Thus, OCT-A might be a novel biomarker to monitor disease activity and predict future disability.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Neurite Óptica , Humanos , Esclerose Múltipla/patologia , Estudos Transversais , Estudos Prospectivos , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Progressão da Doença
10.
J Neuroophthalmol ; 42(4): 442-453, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049213

RESUMO

BACKGROUND: Spectral-domain (SD-) optical coherence tomography (OCT) can reliably measure axonal (peripapillary retinal nerve fiber layer [pRNFL]) and neuronal (macular ganglion cell + inner plexiform layer [GCIPL]) thinning in the retina. Measurements from 2 commonly used SD-OCT devices are often pooled together in multiple sclerosis (MS) studies and clinical trials despite software and segmentation algorithm differences; however, individual pRNFL and GCIPL thickness measurements are not interchangeable between devices. In some circumstances, such as in the absence of a consistent OCT segmentation algorithm across platforms, a conversion equation to transform measurements between devices may be useful to facilitate pooling of data. The availability of normative data for SD-OCT measurements is limited by the lack of a large representative world-wide sample across various ages and ethnicities. Larger international studies that evaluate the effects of age, sex, and race/ethnicity on SD-OCT measurements in healthy control participants are needed to provide normative values that reflect these demographic subgroups to provide comparisons to MS retinal degeneration. METHODS: Participants were part of an 11-site collaboration within the International Multiple Sclerosis Visual System (IMSVISUAL) consortium. SD-OCT was performed by a trained technician for healthy control subjects using Spectralis or Cirrus SD-OCT devices. Peripapillary pRNFL and GCIPL thicknesses were measured on one or both devices. Automated segmentation protocols, in conjunction with manual inspection and correction of lines delineating retinal layers, were used. A conversion equation was developed using structural equation modeling, accounting for clustering, with healthy control data from one site where participants were scanned on both devices on the same day. Normative values were evaluated, with the entire cohort, for pRNFL and GCIPL thicknesses for each decade of age, by sex, and across racial groups using generalized estimating equation (GEE) models, accounting for clustering and adjusting for within-patient, intereye correlations. Change-point analyses were performed to determine at what age pRNFL and GCIPL thicknesses exhibit accelerated rates of decline. RESULTS: The healthy control cohort (n = 546) was 54% male and had a wide distribution of ages, ranging from 18 to 87 years, with a mean (SD) age of 39.3 (14.6) years. Based on 346 control participants at a single site, the conversion equation for pRNFL was Cirrus = -5.0 + (1.0 × Spectralis global value). Based on 228 controls, the equation for GCIPL was Cirrus = -4.5 + (0.9 × Spectralis global value). Standard error was 0.02 for both equations. After the age of 40 years, there was a decline of -2.4 µm per decade in pRNFL thickness ( P < 0.001, GEE models adjusting for sex, race, and country) and -1.4 µm per decade in GCIPL thickness ( P < 0.001). There was a small difference in pRNFL thickness based on sex, with female participants having slightly higher thickness (2.6 µm, P = 0.003). There was no association between GCIPL thickness and sex. Likewise, there was no association between race/ethnicity and pRNFL or GCIPL thicknesses. CONCLUSIONS: A conversion factor may be required when using data that are derived between different SD-OCT platforms in clinical trials and observational studies; this is particularly true for smaller cross-sectional studies or when a consistent segmentation algorithm is not available. The above conversion equations can be used when pooling data from Spectralis and Cirrus SD-OCT devices for pRNFL and GCIPL thicknesses. A faster decline in retinal thickness may occur after the age of 40 years, even in the absence of significant differences across racial groups.


Assuntos
Esclerose Múltipla , Tomografia de Coerência Óptica , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Tomografia de Coerência Óptica/métodos , Fibras Nervosas , Células Ganglionares da Retina , Estudos Transversais , Esclerose Múltipla/diagnóstico por imagem
11.
Proc Natl Acad Sci U S A ; 119(34): e2206208119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969754

RESUMO

Although glioblastoma multiforme (GBM) is not an invariably cold tumor, checkpoint inhibition has largely failed in GBM. In order to investigate T cell-intrinsic properties that contribute to the resistance of GBM to endogenous or therapeutically enhanced adaptive immune responses, we sorted CD4+ and CD8+ T cells from the peripheral blood, normal-appearing brain tissue, and tumor bed of nine treatment-naive patients with GBM. Bulk RNA sequencing of highly pure T cell populations from these different compartments was used to obtain deep transcriptomes of tumor-infiltrating T cells (TILs). While the transcriptome of CD8+ TILs suggested that they were partly locked in a dysfunctional state, CD4+ TILs showed a robust commitment to the type 17 T helper cell (TH17) lineage, which was corroborated by flow cytometry in four additional GBM cases. Therefore, our study illustrates that the brain tumor environment in GBM might instruct TH17 commitment of infiltrating T helper cells. Whether these properties of CD4+ TILs facilitate a tumor-promoting milieu and thus could be a target for adjuvant anti-TH17 cell interventions needs to be further investigated.


Assuntos
Neoplasias Encefálicas , Linfócitos T CD4-Positivos , Glioblastoma , Linfócitos T Auxiliares-Indutores , Neoplasias Encefálicas/patologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos T Auxiliares-Indutores/citologia
12.
Crit Care ; 26(1): 217, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842675

RESUMO

BACKGROUND: Neurologic manifestations are increasingly reported in patients with coronavirus disease 2019 (COVID-19). Yet, data on prevalence, predictors and relevance for outcome of neurological manifestations in patients requiring intensive care are scarce. We aimed to characterize prevalence, risk factors and impact on outcome of neurologic manifestations in critically ill COVID-19 patients. METHODS: In the prospective, multicenter, observational registry study PANDEMIC (Pooled Analysis of Neurologic DisordErs Manifesting in Intensive care of COVID-19), we enrolled COVID-19 patients with neurologic manifestations admitted to 19 German intensive care units (ICU) between April 2020 and September 2021. We performed descriptive and explorative statistical analyses. Multivariable models were used to investigate factors associated with disorder categories and their underlying diagnoses as well as to identify predictors of outcome. RESULTS: Of the 392 patients included in the analysis, 70.7% (277/392) were male and the mean age was 65.3 (SD ± 3.1) years. During the study period, a total of 2681 patients with COVID-19 were treated at the ICUs of 15 participating centers. New neurologic disorders were identified in 350 patients, reported by these centers, suggesting a prevalence of COVID-19-associated neurologic disorders of 12.7% among COVID-19 ICU patients. Encephalopathy (46.2%; 181/392), cerebrovascular (41.0%; 161/392) and neuromuscular disorders (20.4%; 80/392) were the most frequent categories identified. Out of 35 cerebrospinal fluid analyses with reverse transcriptase PCR for SARS-COV-2, only 3 were positive. In-hospital mortality was 36.0% (140/389), and functional outcome (mRS 3 to 5) of surviving patients was poor at hospital discharge in 70.9% (161/227). Intracerebral hemorrhage (OR 6.2, 95% CI 2.5-14.9, p < 0.001) and acute ischemic stroke (OR 3.9, 95% CI 1.9-8.2, p < 0.001) were the strongest predictors of poor outcome among the included patients. CONCLUSIONS: Based on this well-characterized COVID-19 ICU cohort, that comprised 12.7% of all severe ill COVID-19 patients, neurologic manifestations increase mortality and morbidity. Since no reliable evidence of direct viral affection of the nervous system by COVID-19 could be found, these neurologic manifestations may for a great part be indirect para- or postinfectious sequelae of the infection or severe critical illness. Neurologic ICU complications should be actively searched for and treated.


Assuntos
COVID-19 , Hemorragia Cerebral , AVC Isquêmico , Doenças do Sistema Nervoso , Idoso , COVID-19/complicações , COVID-19/epidemiologia , Hemorragia Cerebral/virologia , Estado Terminal/epidemiologia , Estado Terminal/terapia , Feminino , Humanos , Unidades de Terapia Intensiva , AVC Isquêmico/virologia , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/virologia , Pandemias , Estudos Prospectivos , Sistema de Registros , SARS-CoV-2
13.
Ann Neurol ; 92(3): 476-485, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35703428

RESUMO

OBJECTIVE: Patients with myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease (MOGAD) suffer from severe optic neuritis (ON) leading to retinal neuro-axonal loss, which can be quantified by optical coherence tomography (OCT). We assessed whether ON-independent retinal atrophy can be detected in MOGAD. METHODS: Eighty patients with MOGAD and 139 healthy controls (HCs) were included. OCT data was acquired with (1) Spectralis spectral domain OCT (MOGAD: N = 66 and HCs: N = 103) and (2) Cirrus high-definition OCT (MOGAD: N = 14 and HCs: N = 36). Macular combined ganglion cell and inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) were quantified. RESULTS: At baseline, GCIPL and pRNFL were lower in MOGAD eyes with a history of ON (MOGAD-ON) compared with MOGAD eyes without a history of ON (MOGAD-NON) and HCs (p < 0.001). MOGAD-NON eyes had lower GCIPL volume compared to HCs (p < 0.001) in the Spectralis, but not in the Cirrus cohort. Longitudinally (follow-up up to 3 years), MOGAD-ON with ON within the last 6-12 months before baseline exhibited greater pRNFL thinning than MOGAD-ON with an ON greater than 12 months ago (p < 0.001). The overall MOGAD cohort did not exhibit faster GCIPL thinning compared with the HC cohort. INTERPRETATION: Our study suggests the absence of attack-independent retinal damage in patients with MOGAD. Yet, ongoing neuroaxonal damage or edema resolution seems to occur for up to 12 months after ON, which is longer than what has been reported with other ON forms. These findings support that the pathomechanisms underlying optic nerve involvement and the evolution of OCT retinal changes after ON is distinct in patients with MOGAD. ANN NEUROL 2022;92:476-485.


Assuntos
Síndromes de Imunodeficiência/complicações , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurite Óptica/complicações , Degeneração Retiniana/etiologia , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Estudos Longitudinais , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/etiologia , Retina/diagnóstico por imagem , Neurônios Retinianos , Tomografia de Coerência Óptica/métodos
15.
Neurology ; 99(11): e1100-e1112, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35764402

RESUMO

BACKGROUND AND OBJECTIVES: Recent studies have suggested that intereye differences (IEDs) in peripapillary retinal nerve fiber layer (pRNFL) or ganglion cell + inner plexiform (GCIPL) thickness by spectral domain optical coherence tomography (SD-OCT) may identify people with a history of unilateral optic neuritis (ON). However, this requires further validation. Machine learning classification may be useful for validating thresholds for OCT IEDs and for examining added utility for visual function tests, such as low-contrast letter acuity (LCLA), in the diagnosis of people with multiple sclerosis (PwMS) and for unilateral ON history. METHODS: Participants were from 11 sites within the International Multiple Sclerosis Visual System consortium. pRNFL and GCIPL thicknesses were measured using SD-OCT. A composite score combining OCT and visual measures was compared individual measurements to determine the best model to distinguish PwMS from controls. These methods were also used to distinguish those with a history of ON among PwMS. Receiver operating characteristic (ROC) curve analysis was performed on a training data set (2/3 of cohort) and then applied to a testing data set (1/3 of cohort). Support vector machine (SVM) analysis was used to assess whether machine learning models improved diagnostic capability of OCT. RESULTS: Among 1,568 PwMS and 552 controls, variable selection models identified GCIPL IED, average GCIPL thickness (both eyes), and binocular 2.5% LCLA as most important for classifying PwMS vs controls. This composite score performed best, with area under the curve (AUC) = 0.89 (95% CI 0.85-0.93), sensitivity = 81%, and specificity = 80%. The composite score ROC curve performed better than any of the individual measures from the model (p < 0.0001). GCIPL IED remained the best single discriminator of unilateral ON history among PwMS (AUC = 0.77, 95% CI 0.71-0.83, sensitivity = 68%, specificity = 77%). SVM analysis performed comparably with standard logistic regression models. DISCUSSION: A composite score combining visual structure and function improved the capacity of SD-OCT to distinguish PwMS from controls. GCIPL IED best distinguished those with a history of unilateral ON. SVM performed as well as standard statistical models for these classifications. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that SD-OCT accurately distinguishes multiple sclerosis from normal controls as compared with clinical criteria.


Assuntos
Esclerose Múltipla , Neurite Óptica , Humanos , Aprendizado de Máquina , Esclerose Múltipla/diagnóstico , Fibras Nervosas , Neurite Óptica/diagnóstico , Células Ganglionares da Retina , Tomografia de Coerência Óptica/métodos
16.
J Mol Med (Berl) ; 100(6): 933-946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35536323

RESUMO

Aquaporin-4 (AQP4) is the molecular target of the immune response in neuromyelitis optica (NMO) that leads to severe structural damage in the central nervous system (CNS) and in the retina. Conversely, AQP4 might be upregulated in astrocytes as a compensatory event in multiple sclerosis. Thus, the functional relevance of AQP4 in neuroinflammation needs to be defined. Here, we tested the role of AQP4 in the retina in MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE) using optical coherence tomography (OCT), OCT angiography, immunohistology, flow cytometry, and gene expression analysis in wild-type and Aqp4-/- mice. No direct infiltrates of inflammatory cells were detected in the retina. Yet, early retinal expression of TNF and Iba1 suggested that the retina participated in the inflammatory response during EAE in a similar way in wild-type and Aqp4-/- mice. While wild-type mice rapidly cleared retinal swelling, Aqp4-/- animals exhibited a sustainedly increased retinal thickness associated with retinal hyperperfusion, albumin extravasation, and upregulation of GFAP as a hallmark of retinal scarring at later stages of EAE. Eventually, the loss of retinal ganglion cells was higher in Aqp4-/- mice than in wild-type mice. Therefore, AQP4 expression might be critical for retinal Müller cells to clear the interstitial space from excess vasogenic edema and prevent maladaptive scarring in the retina during remote inflammatory processes of the CNS. KEY MESSAGES : Genetic ablation of AQP4 leads to a functional derangement of the retinal gliovascular unit with retinal hyperperfusion during autoimmune CNS inflammation. Genetic ablation of AQP4 results in a structural impairment of the blood retina barrier with extravasation of albumin during autoimmune CNS inflammation. Eventually, the lack of AQP4 in the retina during an inflammatory event prompts the exaggerated upregulation of GFAP as a hallmark of scarring as well as loss of retinal ganglion cells.


Assuntos
Encefalomielite Autoimune Experimental , Gliose , Albuminas/metabolismo , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Cicatriz/patologia , Gliose/metabolismo , Gliose/patologia , Inflamação/metabolismo , Camundongos , Retina/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-35301260

RESUMO

BACKGROUND AND OBJECTIVES: Rarefication of the retinal vasculature as measured by optical coherence tomography angiography (OCT-A) is a novel finding in patients with multiple sclerosis (MS). This study aimed to analyze longitudinal dynamics of the retinal vasculature following an acute inflammatory relapse including acute optic neuritis (ON) and to search for associations with alterations of the retinal architecture and visual function. METHODS: This prospective longitudinal cohort study included patients with relapsing-remitting MS or clinically isolated syndrome having an acute ON (n = 20) or a non-ON relapse (n = 33). Patients underwent examinations at baseline and after 7, 14, 28, 90, and 180 days with OCT, OCT-A, and assessment of the high- (HCVA) and low-contrast visual acuity (LCVA). RESULTS: Retinal vessel loss of the superficial vascular complex (SVC) evolves early after ON and reaches a plateau between 90 and 180 days (relative vessel loss 15% ± 8% [mean ± SD]). In addition, an 18% ± 18% intraindividual increase of the foveal avascular zone (FAZ) is evident within 180 days after acute ON. Both SVC thinning and FAZ enlargement were associated with worse HCVA and LCVA. Rarefication of the SVC evolved simultaneously to thinning of the common ganglion cell and inner plexiform layer (GCIP) after ON. No alterations of the deep vascular complex were seen in eyes with ON, and no alterations of the retinal vasculature were recognized in patients having acute non-ON relapses. DISCUSSION: Rarefication of the SVC and growing of the FAZ evolve rapidly after ON and are linked to persistent visual disability. ON-related SVC thinning might be closely linked to GCIP atrophy and might occur due to an altered local metabolic activity within inner retinal layers.


Assuntos
Esclerose Múltipla , Neurite Óptica , Humanos , Estudos Longitudinais , Esclerose Múltipla/complicações , Neurite Óptica/complicações , Estudos Prospectivos , Recidiva , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica , Transtornos da Visão/complicações
18.
J Clin Med ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160057

RESUMO

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) profoundly impacts hemostasis and microvasculature. In the light of the dilemma between thromboembolic and hemorrhagic complications, in the present paper, we systematically investigate the prevalence, mortality, radiological subtypes, and clinical characteristics of intracranial hemorrhage (ICH) in coronavirus disease (COVID-19) patients. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review of the literature by screening the PubMed database and included patients diagnosed with COVID-19 and concomitant ICH. We performed a pooled analysis, including a prospectively collected cohort of critically ill COVID-19 patients with ICH, as part of the PANDEMIC registry (Pooled Analysis of Neurologic Disorders Manifesting in Intensive Care of COVID-19). RESULTS: Our literature review revealed a total of 217 citations. After the selection process, 79 studies and a total of 477 patients were included. The median age was 58.8 years. A total of 23.3% of patients experienced the critical stage of COVID-19, 62.7% of patients were on anticoagulation and 27.5% of the patients received ECMO. The prevalence of ICH was at 0.85% and the mortality at 52.18%, respectively. CONCLUSION: ICH in COVID-19 patients is rare, but it has a very poor prognosis. Different subtypes of ICH seen in COVID-19, support the assumption of heterogeneous and multifaceted pathomechanisms contributing to ICH in COVID-19. Further clinical and pathophysiological investigations are warranted to resolve the conflict between thromboembolic and hemorrhagic complications in the future.

19.
Mult Scler ; 28(4): 522-531, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34259579

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorders (NMOSD) are neuroinflammatory diseases of the central nervous system. Patients suffer from recurring relapses and it is unclear whether relapse-independent disease activity occurs and whether this is of clinical relevance. OBJECTIVE: To detect disease-specific alterations of the retinal vasculature that reflect disease activity during NMOSD. METHODS: Cross-sectional analysis of 16 patients with NMOSD, 21 patients with relapsing-remitting multiple sclerosis, and 21 healthy controls using retinal optical coherence tomography (OCT), optical coherence tomography angiography (OCT-A), measurement of glial fibrillary acidic protein (GFAP) serum levels, and assessment of visual acuity. RESULTS: Patients with NMOSD but not multiple sclerosis revealed lower foveal thickness (FT) (p = 0.02) measures and an increase of the foveal avascular zone (FAZ) (p = 0.02) compared to healthy controls independent to optic neuritis. Reduced FT (p = 0.01), enlarged FAZ areas (p = 0.0001), and vessel loss of the superficial vascular complex (p = 0.01) were linked to higher serum GFAP levels and superficial vessel loss was associated with worse visual performance in patients with NMOSD irrespective of optic neuritis. CONCLUSION: Subclinical parafoveal retinal vessel loss might occur during NMOSD and might be linked to astrocyte damage and poor visual performance. OCT-A may be a tool to study subclinical disease activity during NMOSD.


Assuntos
Neuromielite Óptica , Doenças Retinianas , Angiografia , Estudos Transversais , Humanos , Neuromielite Óptica/diagnóstico , Tomografia de Coerência Óptica/métodos
20.
Eur J Neurol ; 28(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34374178

RESUMO

BACKGROUND AND PURPOSE: Peripapillary hyper-reflective ovoid masslike structures (PHOMS) are a novel finding during retinal optical coherence tomography in patients with multiple sclerosis (MS). To date, there are no data on the occurrence of PHOMS in early MS. The aim of this study was to investigate the frequency of PHOMS in patients with first diagnosed early relapsing-remitting MS (RRMS) and to search for associations of PHOMS with disease patterns in different MS subtypes. METHODS: This was a cross-sectional analysis in two different cohorts: cohort 1, consisting of early RRMS patients (n = 349); cohort 2, consisting of patients with primary progressive MS (PPMS) (n = 66) and RRMS (n = 65). RESULTS: Peripapillary hyper-reflective ovoid masslike structures were detected in 18.3% of patients with early RRMS. The occurrence of PHOMS was not associated with age, disease duration and disability. Investigating clinical patterns and the occurrence of PHOMS (cohort 2), an association of PHOMS with higher Expanded Disability Status Scale measures (PHOMS 4.9, 3.7-6.1; no PHOMS 3.5, 3.0-5.3; p = 0.03) and longer disease durations (PHOMS 6.5 years, 1.9-11.0; no PHOMS 1.0 years, 0.0-4.0, p = 0.0007) was found in patients with PPMS but not RRMS. After p value adjustment, the disease duration appeared to be more relevant (ß = 0.16, p = 0.06). CONCLUSION: Peripapillary hyper-reflective ovoid masslike structures were found in 18% of patients with early MS. The presence of PHOMS might be associated with disease progression only in PPMS but not RRMS, suggesting that PHOMS might be embedded in neurodegenerative processes.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Estudos Transversais , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/complicações , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA