Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38397699

RESUMO

The purpose of the study was to examine static postural control/balance in young adults with intellectual and developmental disabilities (IDD) and typically developing (TD) young adults before, during, and after an inclusive badminton intervention. Eight participants (four IDD-BADM and four TD-BADM) participated in a 12-week inclusive badminton intervention, with the other eight participants as matched controls (four IDD-CONTR and four TD-CONTR) (74.19 kg ± 9.8 kg, 171.96 cm ± 5.4 cm; 21.7 ± 1.8 years of age; nine females and seven males; eight with IDD and eight TD). The study followed a repeated measures design (pre, mid, post) before the intervention, at 6 weeks, and after 12 weeks. Static postural sway conditions included: bilateral stance eyes open (20 s), eyes closed (10 s), foam eyes open (20 s), foam eyes closed (10 s), and unilateral stance eyes open (10 s) and foam eyes open (10 s). Sway measurements included: average anterior/posterior (A/P) displacement (in), average medial/lateral (M/L) displacement (in), average 95% ellipsoid area (in2), and average velocity (ft/s). Significant time × group interactions were reported for average velocity (EO) (p = 0.030), average length (EO) (p = 0.030), 95% ellipsoid area (EO) (p = 0.049), and average A/P displacement (1LEO) (p = 0.036) for IDD-BADM. Significant time main effects were reported for average A/P displacement (FEO) (p = 0.040) for IDD groups. Significant time main effects were reported for average M/L displacement (EO) (p = 0.001), (EC) (p = 0.004), (FEO) (p = 0.005), (FEC) (p = 0.004), and average A/P displacement (EO) (p = 0.006) and (FEO) (p = 0.005) for TD groups. An inclusive badminton program indicated evidence of improved static postural control for those with IDD. However, no significant differences were reported for TD peers.


Assuntos
Deficiências do Desenvolvimento , Equilíbrio Postural , Masculino , Criança , Feminino , Adulto Jovem , Humanos , Projetos de Pesquisa
2.
J Sport Rehabil ; 33(3): 215-219, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198793

RESUMO

CONTEXT: Latency is a reliable temporal metric used to evaluate sensorimotor integration of the fibularis longus (FL) and fibularis brevis (FB) during lateral ankle sprain perturbations. Currently, no clinical recommendations exist to select appropriate thresholds to evaluate the closed-loop reflex response of the lateral ankle musculature. The purpose of this study was to assess threshold value on latency of the FL and FB during an unanticipated inversion perturbation that simulates the mechanism of a lateral ankle sprain. DESIGN: Descriptive laboratory study. METHODS: Twenty healthy adults with no history of lateral ankle sprain injury completed an unanticipated single-leg drop landing onto a 25° laterally inclined force platform from a height of 30 cm. Surface electromyography recorded muscle activity data from the FL and FB during the inversion perturbation. Latency was identified at points where muscle activity exceeded 2, 5, and 10 SD above the average muscle activity 200 milliseconds prior to foot contact, and compared across threshold value using a 1-way analysis of variance (P < .05). RESULTS: The 2 SD threshold was significantly shorter than both 5 SD and 10 SD thresholds for the FL (P < .01) and FB (P < .01). Likewise, the 5 SD threshold was significantly shorter than the 10 SD thresholds for FL (P = .004) and FB (P = .003). CONCLUSIONS: More sensitive thresholds results in a shorter closed-loop reflexive response compared to the more rigorous thresholds. We recommend that selection of the appropriate threshold to identify latency of the lateral ankle musculature should be based on the device used to simulate a lateral ankle sprain and the ankle inversion velocity produced during the ankle inversion perturbation.


Assuntos
Traumatismos do Tornozelo , Tornozelo , Adulto , Humanos , Extremidade Inferior , Articulação do Tornozelo , Reflexo
3.
Saf Health Work ; 14(3): 303-308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37818213

RESUMO

Background: Occupational workers at altitudes are more prone to falls, leading to catastrophic outcomes. Acrophobia, height-related anxiety, and affected executive functions lead to postural instabilities, causing falls. This study investigated the effects of repeated virtual height exposure and training on cognitive processing and height-related anxiety. Methods: Twenty-eight healthy volunteers (age 20.48 ± 1.26 years; mass 69.52 ± 13.78 kg) were recruited and tested in seven virtual environments (VE) [ground (G), 2-story altitude (A1), 2-story edge (E1), 4-story altitude (A2), 4-story edge (E2), 6-story altitude (A3), and 6-story edge (E3)] over three days. At each VE, participants identified occupational hazards present in the VE and completed an Attitude Towards Heights Questionnaire (ATHQ) and a modified State-Trait Anxiety Inventory Questionnaire (mSTAIQ). The number of hazards identified and the ATHQ and mSTAIQ scores were analyzed using a 7 (VE; G, A1, A2, A3, E1, E2, E3) x 3 (DAY; DAY 1, DAY 2, DAY 3) factorial repeated measures analysis of variance. Results: The participants identified the lowest number of hazards at A3 and E3 VEs and on DAY 1 compared to other VEs and DAYs. ATHQ scores were lowest at G, A1, and E1 VEs. Conclusion: Cognitive processing is negatively affected by virtual altitudes, while it improves with short-term training. The features of virtual reality, such as higher involvement, engagement, and reliability, make it a better training tool to be considered in ergonomic settings. The findings of this study will provide insights into cognitive dual-tasking at altitude and its challenges, which will aid in minimizing occupational falls.

4.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37382233

RESUMO

Inelastic collisions of OH with an inert liquid perfluoropolyether (PFPE) surface have been studied experimentally. A pulsed molecular beam of OH with a kinetic energy distribution peaking at 35 kJ mol-1 was directed at a continually refreshed PFPE surface. OH molecules were detected state-selectively with spatial and temporal resolution by pulsed, planar laser-induced fluorescence. The scattered speed distributions were confirmed to be strongly superthermal, regardless of the incidence angle (0° or 45°). Angular scattering distributions were measured for the first time; their reliability was confirmed through extensive Monte Carlo simulations of experimental averaging effects, described in Paper II [A. G. Knight et al., J. Chem. Phys. 158, 244705 (2023)]. The distributions depend markedly on the incidence angle and are correlated with scattered OH speed, consistent with predominantly impulsive scattering. For 45° incidence, the angular distributions are distinctly asymmetric to the specular side but peak at sub-specular angles. This, along with the breadth of the distributions, is incompatible with scattering from a surface that is flat on a molecular scale. New molecular dynamics simulations corroborate the roughness of the PFPE surface. A subtle but unexpected systematic dependence of the angular distribution on the OH rotational state was found, which may be dynamical in origin. The OH angular distributions are similar to those for kinematically similar Ne scattering from PFPE and hence not strongly perturbed by OH being a linear rotor. The results here are broadly compatible with prior predictions from independent quasiclassical trajectory simulations of OH scattering from a model-fluorinated self-assembled monolayer surface.

5.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37382234

RESUMO

We have analyzed the effects of the spreads in experimental parameters on the reliability of speeds and angular distributions extracted from a generic surface-scattering experiment based on planar laser-induced fluorescence detection. The numerical model assumes a pulsed beam of projectile molecules is directed at a surface. The spatial distribution of the scattered products is detected by imaging the laser-induced fluorescence excited by a thin, pulsed sheet of laser light. Monte Carlo sampling is used to select from realistic distributions of the experimental parameters. The key parameter is found to be the molecular-beam diameter, expressed as a ratio to the measurement distance from the point of impact. Measured angular distributions are negligibly distorted when this ratio is <∼10%. Measured most-probable speeds are more tolerant, being undistorted when it is <∼20%. In contrast, the spread of speeds or of corresponding arrival times in the incident molecular beam has only very minor systematic effects. The thickness of the laser sheet is also unimportant within realistic practical limits. These conclusions are broadly applicable to experiments of this general type. In addition, we have analyzed the specific set of parameters designed to match the experiments on OH scattering from a liquid perfluoropolyether (PFPE) surface in the Paper I [Roman et al., J. Chem. Phys. 158, 244704 (2023)]. This reveals that the detailed form of the molecular-beam profile is important, particularly on apparent angular distributions, for geometric reasons that we explain. Empirical factors have been derived to correct for these effects.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36673958

RESUMO

The Star Excursion Balance Test (SEBT) is a common assessment used across clinical and research settings to test dynamic standing balance. The primary measure of this test is maximal reaching distance performed by the non-stance limb. Response time (RT) is a critical cognitive component of dynamic balance control and the faster the RT, the better the postural control and recovery from a postural perturbation. However, the measure of RT has not been done in conjunction with SEBT, especially with musculoskeletal fatigue. The purpose of this study is to examine RT during a SEBT, creating a modified SEBT (mSEBT), with a secondary goal to examine the effects of muscular fatigue on RT during SEBT. Sixteen healthy young male and female adults [age: 20 ± 1 years; height: 169.48 ± 8.2 cm; weight: 67.93 ± 12.7 kg] performed the mSEBT in five directions for three trials, after which the same was repeated with a response time task using Blazepod™ with a random stimulus. Participants then performed a low-intensity musculoskeletal fatigue task and completed the above measures again. A 2 × 2 × 3 repeated measures ANOVA was performed to test for differences in mean response time across trials, fatigue states, and leg reach as within-subjects factors. All statistical analyses were conducted in JASP at an alpha level of 0.05. RT was significantly faster over the course of testing regardless of reach leg or fatigue state (p = 0.023). Trial 3 demonstrated significantly lower RT compared to Trial 1 (p = 0.021). No significant differences were found between fatigue states or leg reach. These results indicate that response times during the mSEBT with RT is a learned skill that can improve over time. Future research should include an extended familiarization period to remove learning effects and a greater fatigue state to test for differences in RT during the mSEBT.


Assuntos
, Equilíbrio Postural , Adulto , Humanos , Masculino , Feminino , Adulto Jovem , Tempo de Reação , Equilíbrio Postural/fisiologia , Fadiga , Cognição
7.
Wearable Technol ; 4: e4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487777

RESUMO

The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot-ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher R-squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot-ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system.

8.
Healthcare (Basel) ; 10(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35885797

RESUMO

Compression socks are used by a very diverse group of individuals and may potentially have a greater impact on physically diminished or impaired individuals as opposed to healthy individuals. The purpose of this study was to compare the effects of sub-clinical (SC) and clinical (CL) compression socks among healthy (CON), copers (COP), and individuals with chronic ankle instability (CAI). Postural stability was evaluated in 20 participants (11 males and 9 females) using Balance Tracking System Balance platform (BTrackS™) during the modified clinical test of sensory integration in balance (mCTSIB) and limits of stability (LOS) tests. Postural sway parameters were analyzed using a mixed model repeated measures analysis of variance 3 (group: CON, COP, and CAI) by 3 (compression condition: BF, SC, and CL) × 4 (balance condition: EO, EC, EOF, and ECF) for mCTSIB and a 3 (group: CON, COP, and CAI) by 3 (compression condition: BF, SC, CL) × 4 (balance condition: FL, BL, BR, FR) for LOS. Results revealed significantly greater postural stability with both SC and CL compression socks when compared to barefoot conditions. However, no significant differences were observed among groups for compression socks grades. Both SC and CL compression socks may be effective in increasing postural stability.

9.
Sports Biomech ; 21(4): 428-446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33896373

RESUMO

This study examined lower extremity joint kinematics in individuals with chronic ankle instability (CAI) and controls during unanticipated and anticipated single-leg drop landings onto a laterally inclined platform. Physically active adults with CAI 15 (n = 15) and controls (n = 15) performed an unanticipated and anticipated 30 cm single-leg drop landing onto a 20° laterally inclined platform. Three-dimensional ankle, knee and hip-joint kinematics were recorded 200 ms pre- to 200 post-landing and analysed with a 2 (group) × 2 (landing condition) SPM ANOVA (p < 0.05). Results revealed individuals with CAI displayed significantly greater ankle internal rotation post-landing across both landing conditions. Anticipated landings elicited significantly greater pre-landing ankle inversion and external rotation, knee abduction and hip adduction. Additionally, significantly less ankle inversion, knee and hip flexion, and knee adduction and hip abduction were present during post-landing of the anticipated landing. Greater ankle internal rotation during landing may contribute to the ankle 'giving way' in individuals with CAI. However, preparatory and reactive proximal-joint kinematics were similar in both groups during landing. This highlights the possible role of the knee and hip joints in assisting with ankle-joint stability during anticipated inversion perturbations.


Assuntos
Traumatismos do Tornozelo , Instabilidade Articular , Adulto , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Extremidade Inferior
10.
Nat Commun ; 12(1): 7200, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893603

RESUMO

Chimeric antigen receptor (CAR) T cells targeting the CD19 antigen are effective in treating adults and children with B-cell malignancies. Place-of-care manufacturing may improve performance and accessibility by obviating the need to cryopreserve and transport cells to centralized facilities. Here we develop an anti-CD19 CAR (CAR19) comprised of the 4-1BB co-stimulatory and TNFRSF19 transmembrane domains, showing anti-tumor efficacy in an in vivo xenograft lymphoma model. CAR19 T cells are manufactured under current good manufacturing practices (cGMP) at two disparate clinical sites, Moscow (Russia) and Cleveland (USA). The CAR19 T-cells is used to treat patients with relapsed/refractory pediatric B-cell Acute Lymphocytic Leukemia (ALL; n = 31) or adult B-cell Lymphoma (NHL; n = 23) in two independently conducted phase I clinical trials with safety as the primary outcome (NCT03467256 and NCT03434769, respectively). Probability of measurable residual disease-negative remission was also a primary outcome in the ALL study. Secondary outcomes include complete remission (CR) rates, overall survival and median duration of response. CR rates are 89% (ALL) and 73% (NHL). After a median follow-up of 17 months, one-year survival rate of ALL complete responders is 79.2% (95%CI 64.5‒97.2%) and median duration of response is 10.2 months. For NHL complete responders one-year survival is 92.9%, and median duration of response has not been reached. Place-of-care manufacturing produces consistent CAR-T cell products at multiple sites that are effective for the treatment of patients with B-cell malignancies.


Assuntos
Antígenos CD19/imunologia , Linfócitos B/imunologia , Linfoma de Células B/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Intervalo Livre de Progressão , Receptores de Antígenos de Linfócitos T , Receptores do Fator de Necrose Tumoral/química , Federação Russa , Estados Unidos , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-34639811

RESUMO

BACKGROUND: Postural strategies such as ankle, hip, or combined ankle-hip strategies are used to maintain optimal postural stability, which can be influenced by the footwear type and physiological workload. PURPOSE: This paper reports previously unreported postural strategy scores during the six conditions of the sensory organization test (SOT). METHODS: Fourteen healthy males (age: 23.6 ± 1.2 years; height: 181 ± 5.3 cm; mass: 89.2 ± 14.6 kg) were tested for postural strategy adopted during SOT in three types of occupational footwear (steel-toed work boot, tactical work boot, low-top work shoe) every 30 min during a 4-h simulated occupational workload. Postural strategy scores were analyzed using repeated measures analysis of variance at 0.05 alpha level. RESULTS: Significant differences among postural strategy scores were only evident between SOT conditions, and but not between footwear type or the workload. CONCLUSIONS: Findings indicate that occupational footwear and occupational workload did not cause a significant change in reliance on postural strategies. The significant changes in postural strategy scores were due to the availability of accurate and/or conflicting sensory feedback during SOT conditions. In SOT conditions where all three types of sensory feedback was available, the ankle strategy was predominantly adopted, while more reliance on hip strategy occurred in conditions with absent or conflicting sensory feedback.


Assuntos
Equilíbrio Postural , Carga de Trabalho , Adulto , Articulação do Tornozelo , Retroalimentação Sensorial , Humanos , Masculino , Sapatos , Adulto Jovem
12.
Artigo em Inglês | MEDLINE | ID: mdl-34639448

RESUMO

Trip-induced falls are extremely common in ergonomic settings. Such situations can lead to fatal or non-fatal injuries, affecting the workers' quality of life and earning capacity. Dual tasking (DT) is a leading cause of trips and ineffective obstacle clearance among workers. DT increases their attentional demand, challenging both postural control and concurrent secondary tasks. As the human brain has limited attentional processing capacity, even young, healthy adults need to prioritize duties during DT. This article aimed to analyze these secondary task types and their applications in recent trip-related studies conducted on young, healthy adults. An extensive review of the recent trip-related literature was performed to provide a condensed summary of the dual tasks used. In previous trip-related literature, distinct types of secondary tasks were used. The choice of the concurrent task must be made vigilantly depending on the occupation, environmental context, available resources, and feasibility. DT can be used as a tool to train workers on selective attention, which is a lifesaving skill in ergonomic settings, especially in the occupations of roofers, construction workers, or truck drivers. Such training can result in successful obstacle clearance and trip recovery skills, which eventually minimizes the number of falls at the workplace.


Assuntos
Equilíbrio Postural , Qualidade de Vida , Acidentes por Quedas , Adulto , Atenção , Humanos , Cinética
13.
Artigo em Inglês | MEDLINE | ID: mdl-33668132

RESUMO

Falls are extremely common in occupational settings. Intrinsic factors such as overexertion and extrinsic factors such as the supporting surface are causative factors of falls. The impact of prolonged exposure to a slippery surface on postural stability has not been previously studied. The purpose of the study was to analyze the effect of extended exposure to a dry and a slippery surface on postural stability. Eighteen males (age: 21.17 ± 3.38 years; height: 1.77 ± 0.08 m; mass: 89.81 ± 14.23 kg) were recruited and subjected to one-hour walking on a dry surface and a slippery surface on two different days. Participants' balance was assessed using a force platform in stable and unstable conditions at 0, 30, and 60 min. Postural sway variables were analyzed using a 2 (surface) × 3 (time) repeated-measures ANOVA. Significant time main effects were observed in the stable condition with greater balance decrements at 30 and 60 min. Greater balance decrements were observed on the slippery surface compared to the dry surface in the unstable condition. The balance decrements can be attributed to overexertion due to the physiological workload of prolonged walking and to the potential gait modifications due to walking on the slippery surface.


Assuntos
Equilíbrio Postural , Caminhada , Acidentes por Quedas , Adolescente , Adulto , Fadiga , Marcha , Humanos , Masculino , Carga de Trabalho , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-33562784

RESUMO

Muscle activity from the slipping leg have been previously used to analyze slip induced falls. However, the impact of casual alternative footwear on slipping leg muscle activity when exposed to slippery environments is still unknown. The purpose of the study was to analyze the impact of alternative footwear (crocs (CC) and flip-flops (FF)) compared to slip-resistant footwear (LT) on lower extremity muscle activity when exposed to dry gait (NG), unexpected (US), alert (AS), and expected slips (ES). Eighteen healthy males (age: 22.3 ± 2.2 years; height: 177.7 ± 6.9 cm; weight: 79.3 ± 7.6 kg) completed the study in a repeated measures design in three footwear sessions separated by 48 h. Electromyography (EMG) muscle activity from four muscles of the lead/slipping leg was measured during the stance phase of the gait-slip trials. A 3 (footwear) × 4 (gait-slip trials) repeated measures analysis of variance was used to analyze EMG dependent variables mean, peak, and percent of maximal voluntary contraction. Greater lower extremity muscle activation during the stance phase was seen in US and AS conditions compared to NG and ES. In addition, footwear differences were seen for the alternative footwear (CC and FF) during US and AS, while the low top slip resistant shoe had no differences across all gait trials, suggesting it as the most efficient footwear of choice, especially when maneuvering slippery flooring conditions, either with or without the knowledge of an impending slip.


Assuntos
Sapatos , Caminhada , Acidentes por Quedas , Fenômenos Biomecânicos , Marcha , Extremidade Inferior , Masculino
15.
J Strength Cond Res ; 35(Suppl 1): S152-S157, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30694963

RESUMO

ABSTRACT: Krings, BM, Shepherd, BD, Swain, JC, Turner, AJ, Chander, H, Waldman, HS, McAllister, MJ, Knight, AC, and Smith, JW. Impact of fat grip attachments on muscular strength and neuromuscular activation during resistance exercise. J Strength Cond Res 35(2S): S152-S157, 2021-The purpose of this study was to examine the acute effects of Fat Gripz (FG) on muscular activation and strength. Resistance trained men (n = 15; age = 22.4 ± 2.3 years; mass = 83.2 ± 11.1 kg) performed 2 experimental trials in a randomized order. Subjects completed 1 repetition maximum (1RM) testing with an Olympic barbell (OB) and with FG attached to an OB during the exercises of deadlift, bent-over row, upright row, concentration curl, and completed maximum repetitions of pull-ups until failure. Surface electromyography (EMG) was used to measure muscle activity from 8 upper extremity muscles (trapezius, medial deltoid, biceps brachii, triceps brachii, flexor carpi radialis, flexor carpi ulnaris, extensor carpi radialis, and extensor carpi ulnaris), while performing maximal voluntary isometric contractions during 1RM trials and while performing maximum number of pull-ups. When using the FG, 1RM strength was significantly decreased for each exercise, and the maximal number of pull-ups completed was significantly lower. Electromyography muscle activity was significantly increased in the forearm and shoulder muscles, but significantly decreased in the upper arm muscles with the use of FG during deadlift, bent-over row, and pull-ups. However, there were no differences for EMG activity for upright row and concentration curl. Differences in maximal strength, pull-up performance, and EMG activity with FG use may be due to the different muscle length positions. Although FG training may increase neuromuscular activation, decrements in muscular strength may result in prescribing low training loads that may not be ideal for building muscular strength.


Assuntos
Treinamento Resistido , Adulto , Eletromiografia , Força da Mão , Humanos , Contração Isométrica , Masculino , Força Muscular , Músculo Esquelético , Adulto Jovem
16.
Workplace Health Saf ; 69(1): 32-40, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32812846

RESUMO

BACKGROUND: Falls due to postural instability are common in construction environments especially from a height. The purpose of the study was to investigate the impact of virtual reality (VR)-generated environments at different virtual heights on postural stability. METHODS: Nineteen adults were analyzed for postural stability, tested in real (No VR) environment and in three VR environments, randomly assigned, at virtual heights of 0 ft. (VR0), 40 ft. (VR40), and 120 ft. (VR120). Postural stability was quantified using center of pressure postural sway variables and analyzed using a repeated measures analysis of variance (ANOVA). Participants also completed a simulation sickness questionnaire (SSQ) before and after VR exposure and a presence questionnaire (PQ) after VR exposure. FINDINGS: Significant postural instability (p < .05) was identified between VR and No VR, in which increased postural instability was evident in all VR conditions compared with No VR. Scores from SSQ were within a pre-post score difference of five and the PQ score was (104.21 ± 14.03). CONCLUSION/APPLICATION TO PRACTICE: Findings suggest that VR environments, regardless of virtual height, induced increased postural instability, which can be attributed to visual sensory conflicts to the postural control system created by VR exposure. Participants' subjective responses on SSQ and PQ confirmed the feasibility of using VR to represent realistic immersions in virtual heights. However, objectively, VR could potentially lead to postural instability, stressing caution. VR can be a potential tool for providing virtual high-altitude environment exposure for fall prevention training, however, more research is needed on postural adaptation with acute and chronic exposure to VR.


Assuntos
Acidentes por Quedas/prevenção & controle , Equilíbrio Postural/fisiologia , Realidade Virtual , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Enjoo devido ao Movimento , Inquéritos e Questionários
17.
J Electromyogr Kinesiol ; 54: 102454, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32777448

RESUMO

This study assessed ankle kinematics, surface electromyography, and center-of-pressure (COP) progression relative to the medial border of the foot during a side-cutting task in individuals with and without chronic ankle instability (CAI). Thirty participants (CAI = 15; Controls = 15) performed a side-cutting task on a force platform while 3-dimentional ankle kinematics, COP position, and surface electromyography from the tibialis anterior, medial gastrocnemius, fibularis longus, fibularis brevis, vastus medialis, and semitendinosus were recorded on the testing leg. Ankle kinematics, root-mean-square muscle activity and COP position relative to the medial boarder of the foot were compared between CAI and healthy controls (p < 0.05). Significantly greater ankle internal rotation from 35-54% of the stance phase (p = 0.032) was found for the CAI group compared to controls. Furthermore, significantly greater tibialis anterior muscle activity from 86-94% of the stance phase (p = 0.022) and a more medial COP position from 81-100% (p < 0.05) and of the stance phase was also observed in the CAI group. Less lateral COP progression and increased tibialis anterior activation in the CAI group could reflect a protective movement strategy during anticipated side-cutting to avoid recurrent injury. However, greater ankle internal rotation during mid-stance highlights a potential 'giving way' mechanism in individuals with CAI.


Assuntos
Articulação do Tornozelo/fisiologia , Tornozelo/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Movimento , Pressão , Rotação
18.
Artigo em Inglês | MEDLINE | ID: mdl-32438649

RESUMO

Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance, and for fall detection. Wearable stretch sensors are increasingly being used for human movement monitoring. Additionally, falls are one of the leading causes of both fatal and nonfatal injuries in the workplace. The use of wearable technology in the workplace could be a successful solution for human movement monitoring and fall detection, especially for high fall-risk occupations. This paper provides an in-depth review of different wearable stretch sensors and summarizes the need for wearable technology in the field of ergonomics and the current wearable devices used for fall detection. Additionally, the paper proposes the use of soft-robotic-stretch (SRS) sensors for human movement monitoring and fall detection. This paper also recapitulates the findings of a series of five published manuscripts from ongoing research that are published as Parts I to V of "Closing the Wearable Gap" journal articles that discuss the design and development of a foot and ankle wearable device using SRS sensors that can be used for fall detection. The use of SRS sensors in fall detection, its current limitations, and challenges for adoption in human factors and ergonomics are also discussed.


Assuntos
Acidentes por Quedas , Dispositivos Eletrônicos Vestíveis , Local de Trabalho , Acidentes por Quedas/prevenção & controle , Ergonomia , Humanos , Movimento
19.
Sports (Basel) ; 8(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354166

RESUMO

Maintaining upright standing balance is critical for military personal. The impact of military footwear and occupation-related fatigue on muscle activity during balance performance has been previously documented. However, the current literature has not provided a muscle activation profile of the lower extremity during challenging conditions such as unilateral balance trials. Twenty-two recreationally active male participants (age: 22.2 ± 2.7 years; height: 177 ± 6.8 cm; mass: 79.8 ± 9.7 kg) donned two styles of military footwear (minimalist and standard) and performed a military style workload. Unilateral static balance was accessed before (PRE) and after (POST) the workload as surface electromyography was recorded on the right lower extremity. This study found that the minimalist footwear increased muscle activation prior to the workload compared to the standard footwear (co-contraction index mean difference: 0.149), whereas the standard footwear increased muscle activity after the workload (co-contraction index mean difference: 0.097). These findings suggest that footwear design characteristics affect lower extremity muscle activity differently depending on the workload condition. These findings intend to aid in the design of military footwear to maximize balance performance in a military population.

20.
J Athl Train ; 55(2): 169-175, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31895591

RESUMO

CONTEXT: Individuals with chronic ankle instability (CAI) demonstrate altered lower limb movement dynamics during jump landings, which can contribute to recurrent injury. However, the literature examining lower limb movement dynamics during a side-cutting task in individuals with CAI is limited. OBJECTIVE: To assess lower limb joint kinetics and sagittal-plane joint stiffness during the stance phase of a side-cutting task in individuals with or without CAI. DESIGN: Cohort study. SETTING: Motion-capture laboratory. PATIENTS OR OTHER PARTICIPANTS: Fifteen physically active, young adults with CAI (7 men, 8 women; age = 21.3 ± 1.6 years, height = 171.0 ± 11.2 cm, mass = 73.4 ± 15.2 kg) and 15 healthy matched controls (7 men, 8 women; age = 21.5 ± 1.5 years, height = 169.9 ± 10.6 cm, mass = 75.5 ± 13.0 kg). INTERVENTION(S): Lower limb 3-dimensional kinematic and ground reaction force data were recorded while participants completed 3 successful trials of a side-cutting task. Net internal joint moments, in addition to sagittal-plane ankle-, knee-, and hip-joint stiffness, were computed from 3-dimensional kinematic and ground reaction force data during the stance phase of the side-cutting task and analyzed. MAIN OUTCOME MEASURE(S): Data from each participant's stance phase were normalized to 100% from initial foot contact (0%) to toe-off (100%) to compute means, standard deviations, and Cohen d effect sizes for all dependent variables. RESULTS: The CAI group exhibited a reduced ankle-eversion moment (39%-81% of stance phase) and knee-abduction moment (52%-75% of stance phase) and a greater ankle plantar-flexion moment (3%-16% of stance phase) than the control group (P range = .009-.049). Sagittal-plane hip-joint stiffness was greater in the CAI than in the control group (t28 = 1.978, P = .03). CONCLUSIONS: Our findings suggest that altered ankle-joint kinetics and increased hip-joint stiffness were associated when individuals with CAI performed a side-cutting task. These lower limb kinetic changes may contribute to an increased risk of recurrent lateral ankle sprains in people with CAI. Clinicians and practitioners can use these findings to develop rehabilitation programs for improving maladaptive movement mechanics in individuals with CAI.


Assuntos
Articulação do Tornozelo/fisiologia , Articulação do Tornozelo/fisiopatologia , Instabilidade Articular/fisiopatologia , Extremidade Inferior/fisiopatologia , Traumatismos do Tornozelo/fisiopatologia , Fenômenos Biomecânicos , Doença Crônica , Estudos de Coortes , Feminino , Pé/fisiopatologia , Articulação do Quadril/fisiopatologia , Humanos , Cinética , Articulação do Joelho/fisiopatologia , Masculino , Movimento , Recidiva , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA