Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neurogastroenterol Motil ; 36(4): e14771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396340

RESUMO

BACKGROUND: In preclinical studies whole gut transit (WGT) in mice is a gold-standard "leading-edge" approach that measures the time between orogastric gavage of carmine red and defecation of the first carmine red pellet. Transit studies in humans are performed during the active day because GI motility and transit are suppressed during the night. Since mice are nocturnal, WGT studies traditionally done during the day occur during their rest phase. How circadian rhythm affects WGT in mice is not known. METHODS: We used an automated approach for high temporal resolution uninterrupted testing of mouse WGT and activity. We housed wild-type Bl6/C57 mice under the standard 12 h light-dark cycles. At 8 weeks, we performed carmine red orogastric gavage and assessed WGT during Light (rest) conditions. Then, we exposed mice to a reverse 12 h light-dark cycle for 2 weeks and tested them in the Dark (active) under red light conditions. Timelapse videos were analyzed to quantify activity and to timestamp all pellets, and multiple parameters were analyzed. KEY RESULT: When complementary light cycle reversal experiments were performed, we found a significant increase in mouse activity when mice were tested during their Dark (active) phase, compared to their Light (rest) phase. In mice tested in the Active phase compared to the Rest phase, we found a significant acceleration in WGT, increased rate and total number of pellets produced, and more pellet clustering. These data show that the mice tested in the Active phase have important differences in activity that correlate with multiple alterations in gastrointestinal transit. CONCLUSION & INFERENCES: During the Active phase mice have faster WGT, produce more pellets, and cluster their output compared to testing in the Rest phase. Like in humans, circadian rhythm is an important consideration for transit studies in mice, and a simple reverse light cycle approach facilitates further studies on the role of circadian rhythm in GI motility.


Assuntos
Carmim , Ritmo Circadiano , Humanos , Camundongos , Animais , Fotoperíodo , Trânsito Gastrointestinal , Descanso
2.
J Physiol ; 601(2): 287-305, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428286

RESUMO

Enteroendocrine cells (EECs) are specialized sensors of luminal forces and chemicals in the gastrointestinal (GI) epithelium that respond to stimulation with a release of signalling molecules such as serotonin (5-HT). For mechanosensitive EECs, force activates Piezo2 channels, which generate a very rapidly activating and inactivating (∼10 ms) cationic (Na+ , K+ , Ca2+ ) receptor current. Piezo2 receptor currents lead to a large and persistent increase in intracellular calcium (Ca2+ ) that lasts many seconds to sometimes minutes, suggesting signal amplification. However, intracellular calcium dynamics in EEC mechanotransduction remain poorly understood. The aim of this study was to determine the role of Ca2+ stores in EEC mechanotransduction. Mechanical stimulation of a human EEC cell model (QGP-1) resulted in a rapid increase in cytoplasmic Ca2+ and a slower decrease in ER stores Ca2+ , suggesting the involvement of intracellular Ca2+ stores. Comparing murine primary colonic EECs with colonocytes showed expression of intercellular Ca2+ store receptors, a similar expression of IP3 receptors, but a >30-fold enriched expression of Ryr3 in EECs. In mechanically stimulated primary EECs, Ca2+ responses decreased dramatically by emptying stores and pharmacologically blocking IP3 and RyR1/3 receptors. RyR3 genetic knockdown by siRNA led to a significant decrease in mechanosensitive Ca2+ responses and 5-HT release. In tissue, pressure-induced increase in the Ussing short circuit current was significantly decreased by ryanodine receptor blockade. Our data show that mechanosensitive EECs use intracellular Ca2+ stores to amplify mechanically induced Ca2+ entry, with RyR3 receptors selectively expressed in EECs and involved in Ca2+ signalling, 5-HT release and epithelial secretion. KEY POINTS: A population of enteroendocrine cells (EECs) are specialized mechanosensors of the gastrointestinal (GI) epithelium that respond to mechanical stimulation with the release of important signalling molecules such as serotonin. Mechanical activation of these EECs leads to an increase in intracellular calcium (Ca2+ ) with a longer duration than the stimulus, suggesting intracellular Ca2+ signal amplification. In this study, we profiled the expression of intracellular Ca2+ store receptors and found an enriched expression of the intracellular Ca2+ receptor Ryr3, which contributed to the mechanically evoked increases in intracellular calcium, 5-HT release and epithelial secretion. Our data suggest that mechanosensitive EECs rely on intracellular Ca2+ stores and are selective in their use of Ryr3 for amplification of intracellular Ca2+ . This work advances our understanding of EEC mechanotransduction and may provide novel diagnostic and therapeutic targets for GI motility disorders.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Serotonina , Camundongos , Animais , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Rianodina/farmacologia , Serotonina/metabolismo , Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Mecanotransdução Celular , Células Enteroendócrinas/metabolismo
3.
J Vis Exp ; (181)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35377361

RESUMO

Gastrointestinal (GI) motility is critical for normal digestion and absorption. In the small bowel, which absorbs nutrients, motility optimizes digestion and absorption. For this reason, some of the motility patterns in the small bowel include segmentation for mixing of luminal contents and peristalsis for their propulsion. Physical properties of luminal contents modulate the patterns of small bowel motility. The mechanical stimulation of GI mechanosensory circuits by transiting luminal contents and underlying gut motility initiate and modulate complex GI motor patterns. Yet, the mechanosensory mechanisms that drive this process remain poorly understood. This is primarily due to a lack of tools to dissect how the small bowel handles materials of different physical properties. To study how the small bowel handles particulates of varying sizes, we have modified an established in vivo method to determine small bowel transit. We gavage live mice with fluorescent liquid or tiny fluorescent beads. After 30 minutes, we dissect out the bowels to image the distribution of fluorescent contents across the entirety of the GI tract. In addition to high-resolution measurements of the geometric center, we use variable size binning and spectral analysis to determine how different materials affect small bowel transit. We have explored how a recently discovered "gut touch" mechanism affects small bowel motility using this approach.


Assuntos
Motilidade Gastrointestinal , Intestino Delgado , Abdome , Animais , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Camundongos , Tato
4.
Gastroenterology ; 162(2): 535-547.e13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688712

RESUMO

BACKGROUND AND AIMS: The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity. METHODS: We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents. RESULTS: Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel. CONCLUSIONS: The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.


Assuntos
Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Canais Iônicos/genética , Tato/fisiologia , Animais , Células Enteroendócrinas/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Técnicas de Inativação de Genes , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Canais Iônicos/metabolismo , Mecanorreceptores , Camundongos , Camundongos Transgênicos , Optogenética , Peristaltismo/fisiologia
5.
Neurogastroenterol Motil ; 33(2): e13994, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33000540

RESUMO

BACKGROUND: Gastrointestinal (GI) motility is a complex physiological process that is critical for normal GI function. Disruption of GI motility frequently occurs in GI diseases or as side effects of therapeutics. Whole gut transit measurements, like carmine red leading-edge transit, in mice form the cornerstone of in vivo preclinical GI motility studies. METHOD: We have developed an easily achievable, labor-saving method to measure whole gut transit time in mice. This approach uses inexpensive, commercially available materials to monitor pellet production over time via high definition cameras capturing time-lapse video for offline analysis. KEY RESULT: We describe the assembly of our automated gut transit setup and validate this approach by comparing the results with loperamide to delay transit and conventional transit measurements. We demonstrate that compared to the control group, the loperamide group had slowed transit, evidenced by a decrease in total pellet production and prolonged whole gut transit time. The control group had an extended transit time compared with the results reported in the literature. Whole gut transit rates accelerated to times comparable to the literature by disrupting cages every 10-15 min to imitate the conventional approach, suggesting that disruption affects the assay and supports the use of an automated approach. CONCLUSION & INFERENCES: A novel automated, inexpensive, and easily assembled whole gut transit setup is labor-saving and allows minimal disruption to animal behavior compared with the conventional approach.


Assuntos
Trânsito Gastrointestinal , Imagem com Lapso de Tempo/métodos , Animais , Automação Laboratorial , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem com Lapso de Tempo/instrumentação
6.
J Clin Invest ; 129(2): 712-726, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640176

RESUMO

Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of tissue injury associated with inflammatory bowel diseases (IBDs). The pathological effects of PMNs are largely attributed to the release of soluble mediators and reactive oxygen species (ROS). We identified what we believe is a new, ROS-independent mechanism whereby activated tissue-infiltrating PMNs release microparticles armed with proinflammatory microRNAs (miR-23a and miR-155). Using IBD clinical samples, and in vitro and in vivo injury models, we show that PMN-derived miR-23a and miR-155 promote accumulation of double-strand breaks (DSBs) by inducing lamin B1-dependent replication fork collapse and inhibition of homologous recombination (HR) by targeting HR-regulator RAD51. DSB accumulation in injured epithelium led to impaired colonic healing and genomic instability. Targeted inhibition of miR-23a and miR-155 in cultured intestinal epithelial cells and in acutely injured mucosa decreased the detrimental effects of PMNs and enhanced tissue healing responses, suggesting that this approach can be used in therapies aimed at resolution of inflammation, in wound healing, and potentially to prevent neoplasia.


Assuntos
Colite/metabolismo , Colo/lesões , Instabilidade Genômica , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cicatrização , Animais , Colite/patologia , Colo/metabolismo , Colo/patologia , Quebras de DNA de Cadeia Dupla , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , MicroRNAs/metabolismo , Neutrófilos/patologia , Rad51 Recombinase/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(32): E7632-E7641, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037999

RESUMO

Enterochromaffin (EC) cells constitute the largest population of intestinal epithelial enteroendocrine (EE) cells. EC cells are proposed to be specialized mechanosensory cells that release serotonin in response to epithelial forces, and thereby regulate intestinal fluid secretion. However, it is unknown whether EE and EC cells are directly mechanosensitive, and if so, what the molecular mechanism of their mechanosensitivity is. Consequently, the role of EE and EC cells in gastrointestinal mechanobiology is unclear. Piezo2 mechanosensitive ion channels are important for some specialized epithelial mechanosensors, and they are expressed in mouse and human EC cells. Here, we use EC and EE cell lineage tracing in multiple mouse models to show that Piezo2 is expressed in a subset of murine EE and EC cells, and it is distributed near serotonin vesicles by superresolution microscopy. Mechanical stimulation of a subset of isolated EE cells leads to a rapid inward ionic current, which is diminished by Piezo2 knockdown and channel inhibitors. In these mechanosensitive EE cells force leads to Piezo2-dependent intracellular Ca2+ increase in isolated cells as well as in EE cells within intestinal organoids, and Piezo2-dependent mechanosensitive serotonin release in EC cells. Conditional knockout of intestinal epithelial Piezo2 results in a significant decrease in mechanically stimulated epithelial secretion. This study shows that a subset of primary EE and EC cells is mechanosensitive, uncovers Piezo2 as their primary mechanotransducer, defines the molecular mechanism of their mechanotransduction and mechanosensitive serotonin release, and establishes the role of epithelial Piezo2 mechanosensitive ion channels in regulation of intestinal physiology.


Assuntos
Células Enterocromafins/fisiologia , Canais Iônicos/metabolismo , Jejuno/fisiologia , Mecanotransdução Celular/fisiologia , Serotonina/metabolismo , Animais , Células Cultivadas , Canais Iônicos/genética , Jejuno/citologia , Camundongos , Camundongos Transgênicos , Organoides/fisiologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
8.
Sci Rep ; 7(1): 15650, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142310

RESUMO

In the gastrointestinal (GI) epithelium, enterochromaffin (EC) cells are enteroendocrine cells responsible for producing >90% of the body's serotonin (5-hydroxytryptamine, 5-HT). However, the molecular mechanisms of EC cell function are poorly understood. Here, we found that EC cells in mouse primary cultures fired spontaneous bursts of action potentials. We examined the repertoire of voltage-gated sodium channels (NaV) in fluorescence-sorted mouse EC cells and found that Scn3a was highly expressed. Scn3a-encoded NaV1.3 was specifically and densely expressed at the basal side of both human and mouse EC cells. Using electrophysiology, we found that EC cells expressed robust NaV1.3 currents, as determined by their biophysical and pharmacologic properties. NaV1.3 was not only critical for generating action potentials in EC cells, but it was also important for regulating 5-HT release by these cells. Therefore, EC cells use Scn3a-encoded voltage-gated sodium channel NaV1.3 for electrical excitability and 5-HT release. NaV1.3-dependent electrical excitability and its contribution to 5-HT release is a novel mechanism of EC cell function.


Assuntos
Células Enterocromafins/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Serotonina/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Potenciais de Ação , Animais , Fenômenos Biofísicos , Eletrofisiologia , Células Enterocromafins/efeitos dos fármacos , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Cultura Primária de Células , Serotonina/biossíntese , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
9.
Channels (Austin) ; 11(3): 245-253, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28085630

RESUMO

Enterochromaffin (EC) cells are the primary mechanosensors of the gastrointestinal (GI) epithelium. In response to mechanical stimuliEC cells release serotonin (5-hydroxytryptamine; 5-HT). The molecular details ofEC cell mechanosensitivity are poorly understood. Recently, our group found that human and mouseEC cells express the mechanosensitive ion channel Piezo2. The mechanosensitive currents in a humanEC cell model QGP-1 were blocked by the mechanosensitive channel blocker D-GsMTx4. In the present study we aimed to characterize the effects of the mechanosensitive ion channel inhibitor spider peptide D-GsMTx4 on the mechanically stimulated currents from both QGP-1 and human Piezo2 transfected HEK-293 cells. We found co-localization of 5-HT and Piezo2 in QGP-1 cells by immunohistochemistry. QGP-1 mechanosensitive currents had biophysical properties similar to dose-dependently Piezo2 and were inhibited by D-GsMTx4. In response to direct displacement of cell membranes, human Piezo2 transiently expressed in HEK-293 cells produced robust rapidly activating and inactivating inward currents. D-GsMTx4 reversibly and dose-dependently inhibited both the potency and efficacy of Piezo2 currents in response to mechanical force. Our data demonstrate an effective inhibition of Piezo2 mechanosensitive currents by the spider peptide D-GsMTx4.


Assuntos
Canais Iônicos/antagonistas & inibidores , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Fenômenos Biomecânicos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos
10.
J Physiol ; 595(1): 79-91, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392819

RESUMO

KEY POINTS: The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT: The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.


Assuntos
Células Enterocromafins/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Linhagem Celular , Humanos , Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Canais Iônicos/genética , Camundongos , Estimulação Física , Pressão , RNA Mensageiro/metabolismo , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA