Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(720): eabo2750, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910603

RESUMO

Multidrug-resistant organism (MDRO) colonization is a fundamental challenge in antimicrobial resistance. Limited studies have shown that fecal microbiota transplantation (FMT) can reduce MDRO colonization, but its mechanisms are poorly understood. We conducted a randomized, controlled trial of FMT for MDRO decolonization in renal transplant recipients called PREMIX (NCT02922816). Eleven participants were enrolled and randomized 1:1 to FMT or an observation period followed by delayed FMT if stool cultures were MDRO positive at day 36. Participants who were MDRO positive after one FMT were treated with a second FMT. At last visit, eight of nine patients who completed all treatments were MDRO culture negative. FMT-treated participants had longer time to recurrent MDRO infection versus PREMIX-eligible controls who were not treated with FMT. Key taxa (Akkermansia muciniphila, Alistipes putredinis, Phocaeicola dorei, Phascolarctobacterium faecium, Alistipes species, Mesosutterella massiliensis, Barnesiella intestinihominis, and Faecalibacterium prausnitzii) from the single feces donor used in the study that engrafted in recipients and metabolites such as short-chain fatty acids and bile acids in FMT-responding participants uncovered leads for rational microbiome therapeutic and diagnostic development. Metagenomic analyses revealed a previously unobserved mechanism of MDRO eradication by conspecific strain competition in an FMT-treated subset. Susceptible Enterobacterales strains that replaced baseline extended-spectrum ß-lactamase-producing strains were not detectable in donor microbiota manufactured as FMT doses but in one case were detectable in the recipient before FMT. These data suggest that FMT may provide a path to exploit strain competition to reduce MDRO colonization.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal/efeitos adversos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Fezes/microbiologia , Resultado do Tratamento
2.
Sci Total Environ ; 866: 161101, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36581284

RESUMO

Wastewater-based epidemiology during the COVID-19 pandemic has proven useful for public health decision-making but is often hampered by sampling methodology constraints, particularly at the building- or neighborhood-level. Time-weighted composite samples are commonly used; however, autosamplers are expensive and can be affected by intermittent flows in sub-sewershed contexts. In this study, we compared time-weighted composite, grab, and passive sampling via Moore swabs, at four locations across a college campus to understand the utility of passive sampling. After optimizing the methods for sample handling and processing for viral RNA extraction, we quantified SARS-CoV-2 N1 and N2, as well as a fecal strength indicator, PMMoV, by ddRT-PCR and applied tiled amplicon sequencing of the SARS-CoV-2 genome. Passive samples compared favorably with composite samples in our study area: for samples collected concurrently, 42 % of the samples agreed between Moore swab and composite samples and 58 % of the samples were positive for SARS-CoV-2 using Moore swabs while composite samples were below the limit of detection. Variant profiles from Moore swabs showed a shift from variant BA.1 to BA.2, consistent with in-person saliva samples. These data have implications for the broader implementation of sewage surveillance without advanced sampling technologies and for the utilization of passive sampling approaches for other emerging pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Esgotos , Pandemias , Fezes
3.
Environ Sci Technol ; 56(13): 9387-9397, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35704431

RESUMO

Insensitive munitions compounds (IMCs) are emerging nitroaromatic contaminants developed by the military as safer-to-handle alternatives to conventional explosives. Biotransformation of nitroaromatics via microbial respiration has only been reported for a limited number of substrates. Important soil microorganisms can respire natural organic matter (NOM) by reducing its quinone moieties to hydroquinones. Thus, we investigated the NOM respiration combined with the abiotic reduction of nitroaromatics by the hydroquinones formed. First, we established nitroaromatic concentration ranges that were nontoxic to the quinone respiration. Then, an enrichment culture dominated by Geobacter anodireducens could indirectly reduce a broad array of nitroaromatics by first respiring NOM components or the NOM surrogate anthraquinone-2,6-disulfonate (AQDS). Without quinones, no nitroaromatic tested was reduced except for the IMC 3-nitro-1,2,4-triazol-5-one (NTO). Thus, the quinone respiration expanded the spectrum of nitroaromatics susceptible to transformation. The system functioned with very low quinone concentrations because NOM was recycled by the nitroaromatic reduction. A metatranscriptomic analysis demonstrated that the microorganisms obtained energy from quinone or NTO reduction since respiratory genes were upregulated when AQDS or NTO was the electron acceptor. The results indicated microbial NOM respiration sustained by the nitroaromatic-dependent cycling of quinones. This process can be applied as a nitroaromatic remediation strategy, provided that a quinone pool is available for microorganisms.


Assuntos
Hidroquinonas , Microbiologia do Solo , Benzoquinonas , Oxirredução , Quinonas , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA