Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 152: 106458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364445

RESUMO

OBJECTIVES: To investigate the influence of material and printing orientation on wear resistance and flexural properties of one low force SLA- and two DLP-printed splint materials and to compare these 3D-printed splints to a subtractively manufactured splint material. METHODS: Two DLP-printed (V-Print splint, LuxaPrint Ortho Plus) and one low force SLA-printed (Dental LT Clear) material, where specimens were printed in three printing orientations (0°, 45°, 90°), were investigated. In addition, one milled splint material (Zirlux Splint Transparent) was examined. A total of 160 specimens were produced for both test series. The two-body wear test was performed in a chewing simulator (80'000 cycles at 50 N with 5-55 °C thermocycling). Steatite balls were used as antagonists. The wear pattern was analyzed with a 3D digital microscope in terms of maximum vertical intrusion depth (mm) and total volume loss (mm³). The flexural properties were investigated by three-point bending in accordance with ISO 20795-1: 2013 (denture base polymers). The flexural strength (MPa) and the flexural modulus (MPa) were measured. Two-way ANOVA was performed to investigate the effects of the two independent variables material and printing orientation for the three 3D-printed materials. The comparison of the printing orientations within one material was carried out with one-way ANOVA with post-hoc Tukey tests. RESULTS: Two-way ANOVA revealed that wear and flexural properties are highly dependent on the 3D-printed material (p < 0.001). Across groups, a significant effect was observed for wear depth (p = 0.031) and wear volume (p = 0.044) with regard to printing orientation but this was not found for flexural strength (p = 0.080) and flexural modulus (p = 0.136). One-way ANOVA showed that both DLP-printed groups showed no significant differences within the printing orientations in terms of wear and flexural properties. Dental LT Clear showed that 90° oriented specimens had higher flexural strength than 0° oriented ones (p < 0.001) and 45° oriented specimens also showed higher values than 0° ones (p = 0.038). No significant differences were observed within the printing orientations for flexural modulus and wear behaviour within this group. T-tests showed that the milled splints exhibited statistically higher wear resistance and flexural properties compared to all three 3D-printed splint materials (p < 0.001) and that highly significant differences were found between the 3D-printed splint materials for both test series. CONCLUSION: Within the limitations of this in vitro study, it can be stated that wear behaviour and flexural properties are highly dependent on the 3D-printed material itself. Currently, milled splints exhibit higher wear resistance and flexural properties compared to 3D-printed splint materials. The printing orientation has a minor influence on the properties investigated. Nevertheless, two-way ANOVA also showed a significant influence of printing orientation in the wear test across groups and one-way ANOVA detected significant effects for SLA material in terms of flexural strength, with printing in 90° showing the highest flexural strength. Therefore, anisotropy was found in SLA material, but it can be limited with the employed printing parameters. Both DLP-printed materials showed no significant difference within the printing orientation.


Assuntos
Resistência à Flexão , Gastrópodes , Animais , Contenções , Análise de Variância , Anisotropia , Impressão Tridimensional
2.
Am J Orthod Dentofacial Orthop ; 163(1): 33-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243597

RESUMO

INTRODUCTION: The objective of this study was to test the precision of in-vivo indirect bracket placement via medium-soft, transparent, broad-coverage, computer-aided designed and manufactured transfer trays using an automated digital method. METHODS: Seventeen patients requiring vestibular fixed appliances were consecutively recruited, and bonding accuracy was measured at each bracket, evaluating 3 linear (mesiodistal, buccolingual, and vertical) and 3 angular measurements (torque, tip, and rotation) with an automated method involving digital superimposition of individual teeth. Mean and standard deviation values were calculated for both arches, single arch, and tooth type, and the percentages of single deviations over the thresholds of 0.25 mm and 1° were calculated, as well as maximum and minimum values for each deviation and directional bias. Correlations between each variable (arch, tooth type, and single tooth) and deviations were investigated through classification and regression trees (CART) predictive models. RESULTS: Neither mean nor single linear deviations ever exceeded the set cutoff value of 0.25 mm. Mean angular deviations never exceeded 1°, but some individual angular deviations did, specifically 8.31% of torque, 13.16% of tip, and 7.16% of rotation deviations. The highest percentage of deviation was recorded for rotation of the maxillary incisors (18.11%). No evident trend in directional deviation bias was found. Tooth type appears to influence mesiodistal and torque deviations, whereas the single tooth variable influenced the percentage of rotation deviations exceeding 1° (P <0.05). CONCLUSIONS: This computer-aided designed and manufactured medium-soft, transparent transfer tray provides accurate bracket placement and could be recommended for routine fixed appliance treatment.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Humanos , Colagem Dentária/métodos , Incisivo , Aparelhos Ortodônticos Fixos , Desenho Assistido por Computador
3.
Angle Orthod ; 93(1): 79-87, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048244

RESUMO

OBJECTIVES: To investigate and compare the transfer accuracy of five different surgical guides (SGs) for the insertion of orthodontic mini-implants (OMIs) in the anterior palate. MATERIALS AND METHODS: Stereolithographic files of 10 maxillary patient models and their corresponding lateral cephalograms were virtually matched and used for planning the position of two parallel OMIs in the paramedian region of the anterior palate. For each patient model, three 3-dimensional (3D)-printed and two conventional SGs were manufactured from different materials, and a total of 96 OMIs were transferred to the anterior palates of the respective 50 molded resin models. The planned (T0) and the actual (T1) OMI positions were analyzed and compared after superimposition of the digitized models. The deviations between the OMI positions in T0 and T1 were described as the distance between the head and the tip, respectively, of each OMI in millimeters and the deviating angle between the OMI axes for each patient and SG. RESULTS: The conventionally manufactured SGs of Pattern Resin LS (GC Europe N.V., Leuven, Belgium) showed the highest linear and angular transfer accuracy for the insertion of OMIs. The highest deviations were found with the SGs made of IMPRIMO LC Splint (3D-printed; Scheu-Dental, Iserlohn, Germany) and Memosil 2 (conventional SG; Kulzer, Hanau, Germany). CONCLUSIONS: The 3D-printed SGs did not reach the accuracy of the conventional SGs made of Pattern Resin but may provide sufficient accuracy for palatal OMI placement.


Assuntos
Implantes Dentários , Procedimentos de Ancoragem Ortodôntica , Humanos , Implantação Dentária Endóssea/métodos , Palato , Desenho Assistido por Computador , Imageamento Tridimensional/métodos
4.
Diagnostics (Basel) ; 12(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35885432

RESUMO

We aimed to assess the effects of hyperparameter tuning and automatic image augmentation for deep learning-based classification of orthodontic photographs along the Angle classes. Our dataset consisted of 605 images of Angle class I, 1038 images of class II, and 408 images of class III. We trained ResNet architectures for classification of different combinations of learning rate and batch size. For the best combination, we compared the performance of models trained with and without automatic augmentation using 10-fold cross-validation. We used GradCAM to increase explainability, which can provide heat maps containing the salient areas relevant for the classification. The best combination of hyperparameters yielded a model with an accuracy of 0.63-0.64, F1-score 0.61-0.62, sensitivity 0.59-0.65, and specificity 0.80-0.81. For all metrics, it was apparent that there was an ideal corridor of batch size and learning rate combinations; smaller learning rates were associated with higher classification performance. Overall, the performance was highest for learning rates of around 1-3 × 10-6 and a batch size of eight, respectively. Additional automatic augmentation improved all metrics by 5-10% for all metrics. Misclassifications were most common between Angle classes I and II. GradCAM showed that the models employed features relevant for human classification, too. The choice of hyperparameters drastically affected the performance of deep learning models in orthodontics, and automatic image augmentation resulted in further improvements. Our models managed to classify the dental sagittal occlusion along Angle classes based on digital intraoral photos.

5.
J Clin Med ; 11(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35268386

RESUMO

Objective: This study aims to investigate the transfer accuracy of two different design versions for 3D-printed indirect bonding (IDB) trays. Materials and Methods: Digital plaster models of 27 patients virtually received vestibular attachments on every tooth using OnyxCeph³™ (Image Instruments, Chemnitz, Germany). Based on these simulated bracket and tube positions, two versions of transfer trays were designed for each dental arch and patient, which differed in the mechanism of bracket retention: Variant one (V1) had arm-like structures protruding from the tray base and reaching into the horizontal and vertical bracket slots, and variant two (V2) had a pocket-shaped design enclosing the brackets from three sides. Both tray designs were 3D-printed with the same digital light processing (DLP) printer using a flexible resin-based material (IMPRIMO® LC IBT/Asiga MAX™, SCHEU-DENTAL, Iserlohn, Germany). Brackets and tubes (discovery® smart/pearl, Ortho-Cast M-Series, Dentaurum, Ispringen, Germany) were inserted into the respective retention mechanism of the trays and IDB was performed on corresponding plaster models. An intraoral scan (TRIOS® 3W, 3Shape, Copenhagen, Denmark) was performed to capture the actual attachment positions and compared to the virtually planned positions with Geomagic© Control (3D Systems Inc., Rock Hill, SC, USA) using a scripted calculation tool, which superimposed the respective tooth surfaces. The resulting attachment deviations were determined in three linear (mesiodistal, vertical and orovestibular) and three angular (torque, rotation and tip) directions and analyzed with a descriptive statistical analysis. A comparison between the two IDB tray designs was conducted using a mixed model analysis (IBM, SPSS® Statistics 27, Armonk, NY, USA). Results: Both design versions of the 3D-printed IDB trays did not differ significantly in their transfer accuracy (p > 0.05). In total, 98% (V1) and 98.5% (V2) of the linear deviations were within the clinically acceptable range of ±0.2 mm. For the angular deviations, 84.9% (V1) and 86.8% (V2) were within the range of ±1°. With V1, most deviations occurred in the mesiodistal direction (3.3%) and in rotation (18%). With V2, most deviations occurred in the vertical direction (3.8%) and in palatinal and lingual crown torque (16.3%). Conclusions: The transfer accuracies of the investigated design versions for 3D-printed IDB trays show good and comparable results albeit their different retention mechanisms for the attachments and are, therefore, both suitable for clinical practice.

6.
Int J Comput Dent ; 25(3): 295-302, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35072417

RESUMO

AIM: To present an image-processing measurement algorithm to evaluate the transfer accuracy of indirect bonding (IDB) trays, exemplified by a CAD/CAM-based IDB tray integrated into a digital orthodontic workflow. MATERIALS AND METHODS: Plaster casts of 24 patients with full dentition and different malocclusions were scanned with an intraoral scanner (Trios; 3Shape, Copenhagen, Denmark) to obtain digital models, which served for the virtual placement of orthodontic brackets in simulation software (OnyxCeph; Image Instruments, Chemnitz, Germany). The resulting STL files were sent to a dental laboratory (CA Digital; Hilden, Germany) for the production of INDIVIDUA IDB trays. These trays were used to transfer the brackets to the respective plaster casts. Finally, a second scan was performed to record the actual bracket positions. The transfer accuracy was then analyzed by a measurement algorithm scripted to automation, which calculated the deviations of the planned and real bracket positions with a local best-fit alignment, resulting in three linear and three angular measurements for each bracket. RESULTS: In total, 622 brackets and tubes were transferred successfully. The presented algorithm analyzed the transfer accuracy and demonstrated that the linear measurements were 98.3% within the range of the American Board of Orthodontics standard. The angular measurements were 86.7% within this range when the INDIVIDUA IDB tray was used. CONCLUSION: Scripted measurement algorithms facilitated the evaluation of present and future materials and designs for IDB trays to obtain an efficient solution for orthodontic practice. The INDIVIDUA IDB tray is a digital alternative to conventional IDB trays (Int J Comput Dent 2022;25(3):295-302; doi: 10.3290/j.ijcd.b2599775).


Assuntos
Colagem Dentária , Má Oclusão , Braquetes Ortodônticos , Algoritmos , Desenho Assistido por Computador , Colagem Dentária/métodos , Humanos , Modelos Dentários , Impressão Tridimensional
7.
J Clin Med ; 10(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066993

RESUMO

OBJECTIVE: A digital workflow opens up new possibilities for the indirect bonding (IDB) of brackets. We tested if the printing orientation for bracket transfer models on the build platform of a 3D printer influences the accuracy of the following IDB method. We also evaluated the clinical acceptability of the IDB method combining digitally planned and printed transfer models with the conventional fabrication of pressure-molded transfer trays. MATERIALS AND METHODS: In total, 27 digitally planned bracket transfer models were printed with both 15° and 75° angulation from horizontal plane on the build platform of a digital light processing (DLP) printer. Brackets were temporarily bonded to the transfer models and pressure-molded trays were produced on them. IDB was then performed using the trays on the respective plaster models. The plaster models were scanned with an optical scanner. Digitally planned pre-bonding and scanned post-bonding bracket positions were superimposed with a software and resulted in three linear and three angular deviations per bracket. RESULTS: No statistically significant differences of the transfer accuracy of printed transfer models angulated 15° or 75° on the 3D printer build platform were found. About 97% of the linear and 82% of the angular deviations were within the clinically acceptable range of ±0.2 mm and ±1°, respectively. The highest inaccuracies in the linear dimension occurred in the vertical towards the gingival direction and in the angular dimension in palatal crown torque. CONCLUSION: For the IDB method used, the printing orientation on the build platform did not have a significant impact on the transfer accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA