Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136464

RESUMO

We describe boson sampling of interacting atoms from the noncondensed fraction of Bose-Einstein-condensed (BEC) gas confined in a box trap as a new platform for studying computational ♯P-hardness and quantum supremacy of many-body systems. We calculate the characteristic function and statistics of atom numbers via the newly found Hafnian master theorem. Using Bloch-Messiah reduction, we find that interatomic interactions give rise to two equally important entities-eigen-squeeze modes and eigen-energy quasiparticles-whose interplay with sampling atom states determines the behavior of the BEC gas. We infer that two necessary ingredients of ♯P-hardness, squeezing and interference, are self-generated in the gas and, contrary to Gaussian boson sampling in linear interferometers, external sources of squeezed bosons are not required.

2.
Entropy (Basel) ; 24(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36554176

RESUMO

We propose a multi-qubit Bose-Einstein-condensate (BEC) trap as a platform for studies of quantum statistical phenomena in many-body interacting systems. In particular, it could facilitate testing atomic boson sampling of the excited-state occupations and its quantum advantage over classical computing in a full, controllable and clear way. Contrary to a linear interferometer enabling Gaussian boson sampling of non-interacting non-equilibrium photons, the BEC trap platform pertains to an interacting equilibrium many-body system of atoms. We discuss a basic model and the main features of such a multi-qubit BEC trap.

3.
Entropy (Basel) ; 23(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34828120

RESUMO

We present a finite-order system of recurrence relations for the permanent of circulant matrices containing a band of k any-value diagonals on top of a uniform matrix (for k=1,2 and 3) and the method for deriving such recurrence relations, which is based on the permanents of the matrices with defects. The proposed system of linear recurrence equations with variable coefficients provides a powerful tool for the analysis of the circulant permanents, their fast, linear-time computing; and finding their asymptotics in a large-matrix-size limit. The latter problem is an open fundamental problem. Its solution would be tremendously important for a unified analysis of a wide range of the nature's ♯P-hard problems, including problems in the physics of many-body systems, critical phenomena, quantum computing, quantum field theory, theory of chaos, fractals, theory of graphs, number theory, combinatorics, cryptography, etc.

4.
Entropy (Basel) ; 22(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33286096

RESUMO

We reveal the analytic relations between a matrix permanent and major nature's complexities manifested in critical phenomena, fractal structures and chaos, quantum information processes in many-body physics, number-theoretic complexity in mathematics, and ♯P-complete problems in the theory of computational complexity. They follow from a reduction of the Ising model of critical phenomena to the permanent and four integral representations of the permanent based on (i) the fractal Weierstrass-like functions, (ii) polynomials of complex variables, (iii) Laplace integral, and (iv) MacMahon master theorem.

5.
Entropy (Basel) ; 20(3)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33265244

RESUMO

We analytically calculate the statistics of Bose-Einstein condensate (BEC) fluctuations in an interacting gas trapped in a three-dimensional cubic or rectangular box with the Dirichlet, fused or periodic boundary conditions within the mean-field Bogoliubov and Thomas-Fermi approximations. We study a mesoscopic system of a finite number of trapped particles and its thermodynamic limit. We find that the BEC fluctuations, first, are anomalously large and non-Gaussian and, second, depend on the trap's form and boundary conditions. Remarkably, these effects persist with increasing interparticle interaction and even in the thermodynamic limit-only the mean BEC occupation, not BEC fluctuations, becomes independent on the trap's form and boundary conditions.

6.
Phys Rev Lett ; 91(24): 243004, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14683115

RESUMO

When ground-state atoms are accelerated through a high Q microwave cavity, radiation is produced with an intensity which can exceed the intensity of Unruh acceleration radiation in free space by many orders of magnitude. The reason is a strong nonadiabatic effect at cavity boundaries and its interplay with the standard Unruh effect. The cavity field at steady state is still described by a thermal density matrix under most conditions. However, under some conditions gain is possible, and when the atoms are injected in a regular fashion, squeezed radiation can be produced.

7.
Phys Rev Lett ; 90(4): 043902, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12570424

RESUMO

We demonstrate an efficient intracavity nonlinear interaction of laser modes in a specially adapted quantum cascade laser. A two-wavelength quantum cascade laser structure emitting at wavelengths of 7.1 and 9.5 micrometer included cascaded resonant optical intersubband transitions in an intracavity configuration leading to resonantly enhanced sum-frequency and second-harmonic generation at wavelengths of 4.1, 3.6, and 4.7 micrometer respectively. Laser peak optical powers of 60 and 80 mW resulted in 30 nW of sum-frequency signal and 10-15 nW of second-harmonic signal, both in good agreement with theoretical calculations.

8.
Phys Rev Lett ; 88(5): 053602, 2002 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-11863723

RESUMO

We predict and study the effect of parametric self-induced excitation of a molecule moving above the dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates the molecular transition frequency which results in a parametric instability of dipole oscillations even from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which a moving charge and its oscillating image create an oscillating dipole. We show that parametrically excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA