Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Adv Mater ; : e2308149, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319025

RESUMO

Natural porous materials have exceptional properties-for example, light weight, mechanical resilience, and multi-functionality. Efforts to imitate their properties in engineered structures have limited success. This, in part, is caused by the complexity of multi-phase materials composites and by the lack of quantified understanding of each component's role in overall hierarchy. This challenge is twofold: 1) computational. because non-periodicity and defects render constructing design guidelines between geometries and mechanical properties complex and expensive and 2) experimental. because the fabrication and characterization of complex, often hierarchical and non-periodic 3D architectures is non-trivial.

2.
Nat Commun ; 14(1): 7563, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989748

RESUMO

The rise of machine learning has fueled the discovery of new materials and, especially, metamaterials-truss lattices being their most prominent class. While their tailorable properties have been explored extensively, the design of truss-based metamaterials has remained highly limited and often heuristic, due to the vast, discrete design space and the lack of a comprehensive parameterization. We here present a graph-based deep learning generative framework, which combines a variational autoencoder and a property predictor, to construct a reduced, continuous latent representation covering an enormous range of trusses. This unified latent space allows for the fast generation of new designs through simple operations (e.g., traversing the latent space or interpolating between structures). We further demonstrate an optimization framework for the inverse design of trusses with customized mechanical properties in both the linear and nonlinear regimes, including designs exhibiting exceptionally stiff, auxetic, pentamode-like, and tailored nonlinear behaviors. This generative model can predict manufacturable (and counter-intuitive) designs with extreme target properties beyond the training domain.

3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983845

RESUMO

Inspired by crystallography, the periodic assembly of trusses into architected materials has enjoyed popularity for more than a decade and produced countless cellular structures with beneficial mechanical properties. Despite the successful and steady enrichment of the truss design space, the inverse design has remained a challenge: While predicting effective truss properties is now commonplace, efficiently identifying architectures that have homogeneous or spatially varying target properties has remained a roadblock to applications from lightweight structures to biomimetic implants. To overcome this gap, we propose a deep-learning framework, which combines neural networks with enforced physical constraints, to predict truss architectures with fully tailored anisotropic stiffness. Trained on millions of unit cells, it covers an enormous design space of topologically distinct truss lattices and accurately identifies architectures matching previously unseen stiffness responses. We demonstrate the application to patient-specific bone implants matching clinical stiffness data, and we discuss the extension to spatially graded cellular structures with locally optimal properties.


Assuntos
Materiais de Construção , Aprendizado Profundo , Modelos Teóricos
4.
Nat Mater ; 20(11): 1491-1497, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34168332

RESUMO

Architected materials with nanoscale features have enabled extreme combinations of properties by exploiting the ultralightweight structural design space together with size-induced mechanical enhancement at small scales. Apart from linear waves in metamaterials, this principle has been restricted to quasi-static properties or to low-speed phenomena, leaving nanoarchitected materials under extreme dynamic conditions largely unexplored. Here, using supersonic microparticle impact experiments, we demonstrate extreme impact energy dissipation in three-dimensional nanoarchitected carbon materials that exhibit mass-normalized energy dissipation superior to that of traditional impact-resistant materials such as steel, aluminium, polymethyl methacrylate and Kevlar. In-situ ultrahigh-speed imaging and post-mortem confocal microscopy reveal consistent mechanisms such as compaction cratering and microparticle capture that enable this superior response. By analogy to planetary impact, we introduce predictive tools for crater formation in these materials using dimensional analysis. These results substantially uncover the dynamic regime over which nanoarchitecture enables the design of ultralightweight, impact-resistant materials that could open the way to design principles for lightweight armour, protective coatings and blast-resistant shields for sensitive electronics.


Assuntos
Carbono , Polimetil Metacrilato , Polimetil Metacrilato/química
5.
Front Robot AI ; 8: 673478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012982

RESUMO

Soft materials are inherently flexible and make suitable candidates for soft robots intended for specific tasks that would otherwise not be achievable (e.g., smart grips capable of picking up objects without prior knowledge of their stiffness). Moreover, soft robots exploit the mechanics of their fundamental building blocks and aim to provide targeted functionality without the use of electronics or wiring. Despite recent progress, locomotion in soft robotics applications has remained a relatively young field with open challenges yet to overcome. Justly, harnessing structural instabilities and utilizing bistable actuators have gained importance as a solution. This report focuses on substrate-free reconfigurable structures composed of multistable unit cells with a nonconvex strain energy potential, which can exhibit structural transitions and produce strongly nonlinear transition waves. The energy released during the transition, if sufficient, balances the dissipation and kinetic energy of the system and forms a wave front that travels through the structure to effect its permanent or reversible reconfiguration. We exploit a triangular unit cell's design space and provide general guidelines for unit cell selection. Using a continuum description, we predict and map the resulting structure's behavior for various geometric and material properties. The structural motion created by these strongly nonlinear metamaterials has potential applications in propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption.

6.
Proc Natl Acad Sci U S A ; 117(11): 5686-5693, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32132212

RESUMO

Low-density materials with tailorable properties have attracted attention for decades, yet stiff materials that can resiliently tolerate extreme forces and deformation while being manufactured at large scales have remained a rare find. Designs inspired by nature, such as hierarchical composites and atomic lattice-mimicking architectures, have achieved optimal combinations of mechanical properties but suffer from limited mechanical tunability, limited long-term stability, and low-throughput volumes that stem from limitations in additive manufacturing techniques. Based on natural self-assembly of polymeric emulsions via spinodal decomposition, here we demonstrate a concept for the scalable fabrication of nonperiodic, shell-based ceramic materials with ultralow densities, possessing features on the order of tens of nanometers and sample volumes on the order of cubic centimeters. Guided by simulations of separation processes, we numerically show that the curvature of self-assembled shells can produce close to optimal stiffness scaling with density, and we experimentally demonstrate that a carefully chosen combination of topology, geometry, and base material results in superior mechanical resilience in the architected product. Our approach provides a pathway to harnessing self-assembly methods in the design and scalable fabrication of beyond-periodic and nonbeam-based nano-architected materials with simultaneous directional tunability, high stiffness, and unsurpassed recoverability with marginal deterioration.

7.
Proc Natl Acad Sci U S A ; 117(5): 2319-2325, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969454

RESUMO

Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave's direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption.

8.
Nature ; 573(7773): 205-213, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511685

RESUMO

Architected materials can actively respond to external stimuli-such as mechanical forces, hydration and magnetic fields-by changing their geometries and thereby achieve novel functionalities. Such transformations are usually binary and volatile because they toggle between 'on' and 'off' states and require persistent external stimuli. Here we develop three-dimensional silicon-coated tetragonal microlattices that transform into sinusoidal patterns via cooperative beam buckling in response to an electrochemically driven silicon-lithium alloying reaction. In situ microscopy reveals a controllable, non-volatile and reversible structural transformation that forms multiple ordered buckling domains separated by distorted domain boundaries. We investigate the mechanical dynamics of individual buckling beams, cooperative coupling among neighbouring beams, and lithiation-rate-dependent distributions of domain sizes through chemo-mechanical modelling and statistical mechanics analysis. Our results highlight the critical role of defects and energy fluctuations in the dynamic response of architected materials. We further demonstrate that domain boundaries can be programmed to form particular patterns by pre-designing artificial defects, and that a variety of reconfigurational degrees of freedom can be achieved through micro-architecture design. This framework enables the design, fabrication, modelling, behaviour prediction and programming of electrochemically reconfigurable architected materials, and could open the way to beyond-intercalation battery electrodes, tunable phononic crystals and bio-implantable devices.

9.
Adv Sci (Weinh) ; 5(11): 1800728, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479922

RESUMO

To be of engineering relevance, it is essential for stiff and strong materials to possess also high toughness. However, as these properties are typically mutually exclusive, they are rarely found in nature and synthetic replications are extremely limited. Here, an elegant albeit simple physical principle that enables ligaments in cellular networks to possess these mechanical properties simultaneously is presented. The underlying architecture consists of multiple, coaxially aligned layers separated by interfaces that prevent crack propagation, hence increasing the energy required for complete rupture. The results show that the fracture strain and toughness can be increased by over 100%, when compared to conventional reference struts, while fully maintaining the density, stiffness, and strength. The bioinspired and highly versatile approach is scale-independent under the absence of shear, applicable to various geometries, and complementary to existing approaches. It can, therefore, significantly improve safety and reduce cost and environmental impact in numerous applications, such as packaging, sports equipment, and transportation.

10.
Ultrasound Med Biol ; 43(5): 1016-1030, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258771

RESUMO

Gas vesicles (GVs) are a new and unique class of biologically derived ultrasound contrast agents with sub-micron size whose acoustic properties have not been fully elucidated. In this study, we investigated the acoustic collapse pressure and behavior of Halobacterium salinarum gas vesicles at transmit center frequencies ranging from 12.5 to 27.5 MHz. The acoustic collapse pressure was found to be above 550 kPa at all frequencies, nine-fold higher than the critical pressure observed under hydrostatic conditions. We illustrate that gas vesicles behave non-linearly when exposed to ultrasound at incident pressure ranging from 160 kPa to the collapse pressure and generate second harmonic amplitudes of -2 to -6 dB below the fundamental in media with viscosities ranging from 0.89 to 8 mPa·s. Simulations performed using a Rayleigh-Plesset-type model accounting for buckling and a dynamic finite-element analysis suggest that buckling is the mechanism behind the generation of harmonics. We found good agreement between the level of second harmonic relative to the fundamental measured at 20 MHz and the Rayleigh-Plesset model predictions. Finite-element simulations extended these findings to a non-spherical geometry, confirmed that the acoustic buckling pressure corresponds to the critical pressure under hydrostatic conditions and support the hypothesis of limited gas flow across the GV shell during the compression phase in the frequency range investigated. From simulations, estimates of GV bandwidth-limited scattering indicate that a single GV has a scattering cross section comparable to that of a red blood cell. These findings will inform the development of GV-based contrast agents and pulse sequences to optimize their detection with ultrasound.


Assuntos
Meios de Contraste , Halobacterium salinarum , Ondas Ultrassônicas , Simulação por Computador , Microbolhas , Modelos Teóricos , Pressão
11.
Appl Phys Lett ; 110(7): 073704, 2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28289314

RESUMO

Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (∼250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

12.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28323359

RESUMO

A mechanical metamaterial, a simple, periodic mechanical structure, is reported, which reproduces the nonlinear dynamic behavior of materials undergoing phase transitions and domain switching at the structural level. Tunable multistability is exploited to produce switching and transition phenomena whose kinetics are governed by the same Allen-Cahn law commonly used to describe material-level, structural-transition processes. The reported purely elastic mechanical system displays several key features commonly found in atomic- or mesoscale physics of solids. The rotating-mass network shows qualitatively analogous features as, e.g., ferroic ceramics or phase-transforming solids, and the discrete governing equation is shown to approach the phase field equation commonly used to simulate the above processes. This offers untapped opportunities for reproducing material-level, dissipative and diffusive kinetic phenomena at the structural level, which, in turn, invites experimental realization and paves the road for new active, intelligent, or phase-transforming mechanical metamaterials bringing small-scale processes to the macroscopically observable scale.

13.
Proc Natl Acad Sci U S A ; 113(35): 9722-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27519797

RESUMO

Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates.

14.
Phys Rev Lett ; 116(24): 244501, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367390

RESUMO

We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.

15.
Proc Natl Acad Sci U S A ; 112(37): 11502-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26330605

RESUMO

Hierarchically designed structures with architectural features that span across multiple length scales are found in numerous hard biomaterials, like bone, wood, and glass sponge skeletons, as well as manmade structures, like the Eiffel Tower. It has been hypothesized that their mechanical robustness and damage tolerance stem from sophisticated ordering within the constituents, but the specific role of hierarchy remains to be fully described and understood. We apply the principles of hierarchical design to create structural metamaterials from three material systems: (i) polymer, (ii) hollow ceramic, and (iii) ceramic-polymer composites that are patterned into self-similar unit cells in a fractal-like geometry. In situ nanomechanical experiments revealed (i) a nearly theoretical scaling of structural strength and stiffness with relative density, which outperforms existing nonhierarchical nanolattices; (ii) recoverability, with hollow alumina samples recovering up to 98% of their original height after compression to ≥ 50% strain; (iii) suppression of brittle failure and structural instabilities in hollow ceramic hierarchical nanolattices; and (iv) a range of deformation mechanisms that can be tuned by changing the slenderness ratios of the beams. Additional levels of hierarchy beyond a second order did not increase the strength or stiffness, which suggests the existence of an optimal degree of hierarchy to amplify resilience. We developed a computational model that captures local stress distributions within the nanolattices under compression and explains some of the underlying deformation mechanisms as well as validates the measured effective stiffness to be interpreted as a metamaterial property.


Assuntos
Teste de Materiais/métodos , Resistência à Tração , Algoritmos , Óxido de Alumínio/química , Cerâmica , Força Compressiva , Simulação por Computador , Desenho Assistido por Computador , Fractais , Dureza , Nanoestruturas/química , Nanotecnologia , Polímeros/química , Estresse Mecânico
16.
Artigo em Inglês | MEDLINE | ID: mdl-25215840

RESUMO

We investigate the nonlinear dynamics of a periodic chain of bistable elements consisting of masses connected by elastic springs whose constraint arrangement gives rise to a large-deformation snap-through instability. We show that the resulting negative-stiffness effect produces three different regimes of (linear and nonlinear) wave propagation in the periodic medium, depending on the wave amplitude. At small amplitudes, linear elastic waves experience dispersion that is controllable by the geometry and by the level of precompression. At moderate to large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime. For each case, we present closed-form analytical solutions and we confirm our theoretical findings by specific numerical examples. The precompression reveals a class of wave propagation for a partially positive and negative potential. The presented results highlight opportunities in the design of mechanical metamaterials based on negative-stiffness elements, which go beyond current concepts primarily based on linear elastic wave propagation. Our findings shed light on the rich effective dynamics achievable by nonlinear small-scale instabilities in solids and structures.


Assuntos
Elasticidade , Dinâmica não Linear , Som , Simulação por Computador , Análise de Fourier , Cinética , Modelos Lineares , Modelos Teóricos , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA