RESUMO
A small series of copoly(α,l-glutamic acid/dl-allylglycine)s with the same chain length and allylglycine content (â¼10 mol %) but different spatial distribution of allylglycine units was synthesized and subsequently glycosylated via thiol-ene chemistry. Dilute aqueous copolypeptide solutions (0.1 wt %, physiological saline) were analyzed by circular dichroism spectroscopy, dynamic light scattering, and cryogenic transmission electron microscopy. The copolypeptides adopted a random coil or α-helix conformation, depending on solution pH, and the glycosylated residues either distorted or enhanced the folding into an α-helix depending on their location and spatial distribution along the chain. However, regardless of their secondary structure and degree of charging, all partially glycosylated copolypeptides self-assembled into 3D spherical structures, supposedly driven by a hydrophilic effect promoting microphase separation into glucose-rich and glutamate-rich domains.
Assuntos
Solução Salina , Solução Salina/química , Ácido Glutâmico/química , Glicosilação , Dicroísmo Circular , Soluções , Glicina/química , Concentração de Íons de HidrogênioRESUMO
Thermosensitive microgels based on poly(N-isopropylacrylamide) (PNIPAm) have been widely used to create nanoreactors with controlled catalytic activity through the immobilization of metal nanoparticles (NPs). However, traditional approaches with metal NPs located only in the polymer network rely on electric heating to initiate the reaction. In this study, we developed a photothermal-responsive yolk-shell nanoreactor with a tunable location of metal NPs. The catalytic performance of these nanoreactors can be controlled by both light irradiation and conventional heating, that is, electric heating. Interestingly, the location of the catalysts had a significant impact on the reduction kinetics of the nanoreactors; catalysts in the shell exhibited higher catalytic activity compared with those in the core, under conventional heating. When subjected to light irradiation, nanoreactors with catalysts loaded in the core demonstrated improved catalytic performance compared to direct heating, while nanoreactors with catalysts in the shell exhibited relatively similar activity. We attribute this enhancement in catalytic activity to the spatial distribution of the catalysts and the localized heating within the polydopamine cores of the nanoreactors. This research presents exciting prospects for the design of innovative smart nanoreactors and efficient photothermal-assisted catalysis.
RESUMO
The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH4PO4 · 6H2O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s.
RESUMO
Metal/carbon nanotubes (CNTs) have been attractive hybrid systems due to their high specific surface area and exceptional catalytic activity, but their challenging synthesis and dispersion impede their extensive applications. Herein, we report a facile and green approach towards the fabrication of metal/CNT composites, which utilizes a versatile glycopeptide (GP) both as a stabilizer for CNTs in water and as a reducing agent for noble metal ions. The abundant hydrogen bonds in GP endow the formed GP-CNTs with excellent plasticity, enabling the availability of polymorphic CNT species from dispersion to viscous paste, gel, and even to dough by increasing their concentration. The GP molecules can reduce metal precursors at room temperature without additional reducing agents, enabling the in situ immobilization of metal nanoparticles (e.g. Au, Ag, Pt, and Pd) on the CNT surface. The combination of the excellent catalytic properties of Pd particles with photothermal conversion capability of CNTs makes the Pd/CNT composite a promising catalyst for the fast degradation of organic pollutants, as demonstrated by a model catalytic reaction using 4-nitrophenol (4-NP). The conversion of 4-NP using the Pd/CNT composite as the catalyst has increased by 1.6-fold under near infrared light illumination, benefiting from the strong light-to-heat conversion effect of CNTs. Our proposed strategy opens a new avenue for the synthesis of CNT composites as a sustainable and versatile catalyst platform.
RESUMO
Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self-assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time-resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full-field electro-dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule-guided self-assembly can be specifically designed to follow a bottom-up chiral transfer pathway.
RESUMO
Nanoreactors consisting of hydrophilic porous SiO2 shells and amphiphilic copolymer cores have been prepared, which can easily self-tune their hydrophilic/hydrophobic balance depending on the environment and exhibit chameleon-like behavior. The accordingly obtained nanoparticles show excellent colloidal stability in a variety of solvents with different polarity. Most importantly, thanks to the assistance of the nitroxide radicals attached to the amphiphilic copolymers, the synthesized nanoreactors show high catalytic activity for model reactions in both polar and nonpolar environments and, more particularly, realize a high selectivity for the products resulting from the oxidation of benzyl alcohol in toluene.
RESUMO
A protein assembly with the ability to switch interplay modes of multiple driving forces has been achieved. Although biomolecular systems driven by multiple driving forces have been exploited, work on such a protein assembly capable of switching the interplay modes at nanoscale has been rarely reported so far as a result of their great fabrication challenge. In this work, two sets of driving forces such as ligand-ligand interaction and protein-protein interaction were leveraged to antagonistically underpin the multilayered stackings and trigger the hollow evolution to afford the well-defined hollow rectangular frame of proteins. While these protein frames further collapsed into aggregates, the ligand-ligand interactions were weakened, and the interplay of two sets of driving forces thereby tended to switch into synergistic mode, converting the protein packing mode from porously loose packing to axially dense packing and thus giving rise to a morphological evolution toward a nanosized protein tube. This strategy not only provides a nanoscale understanding on the mechanism underlying the switch of interplay modes in the context of biomacromolecules but also may provide access for diverse sophisticated biomacromolecular nanostructures that are historically inaccessible for conventional self-assembly strategies.
Assuntos
Nanoestruturas , Proteínas , Ligantes , Proteínas/química , Nanoestruturas/químicaRESUMO
Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 â¼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.
RESUMO
Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO-LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10-8 S cm-1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g-1 at a potential of 3.9 V vs. Li/Li+. This work showcases antiaromaticity as a new design principle for functional framework materials.
RESUMO
The effect of protein drugs is always limited by their relatively low stability and fast degradation property; thus, various elegant efforts have been made to improve the bioactivity and biocompatibility of the protein drugs. Here, an alternative way is proposed to solve this problem. By simply adding a limited amount of small-molecular regulator, which tunes the subtle balance of protein-protein interactions (PPIs) and disulfide bond formation, the self-assembly property of the protein drug can be regulated, forming an "active protein material" itself. This means that, the resulting biomaterial is dominated by the protein drug and water, with significantly enhanced bone regeneration effect compared to the virgin protein in vitro and in vivo, through multivalent effect between the protein and receptor and the retarded degradation of the assembled proteins. In this active protein material, the protein drug is not only the active drug, but also the drug carrier, which greatly increases the drug-loading efficiency of the biomaterial, indicating the advantages of the easy preparation, high efficiency, and low cost of the active protein material with a bright future in biomedical applications.
Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Calcitonina/farmacologia , Portadores de Fármacos/farmacologiaRESUMO
Due to the great potential of surface-enhanced Raman scattering (SERS) as local vibrational probe of lipid-nanostructure interaction in lipid bilayers, it is important to characterize these interactions in detail. The interpretation of SERS data of lipids in living cells requires an understanding of how the molecules interact with gold nanostructures and how intermolecular interactions influence the proximity and contact between lipids and nanoparticles. Ceramide, a sphingolipid that acts as important structural component and regulator of biological function, therefore of interest to probing, lacks a phosphocholine head group that is common to many lipids used in liposome models. SERS spectra of liposomes of a mixture of ceramide, phosphatidic acid, and phosphatidylcholine, as well as of pure ceramide and of the phospholipid mixture are reported. Distinct groups of SERS spectra represent varied contributions of the choline, sphingosine, and phosphate head groups and the structures of the acyl chains. Spectral bands related to the state of order of the membrane and moreover to the amide function of the sphingosine head groups indicate that the gold nanoparticles interact with molecules involved in different intermolecular relations. While cryogenic electron microscopy shows the formation of bilayer liposomes in all preparations, pure ceramide was found to also form supramolecular, concentric stacked and densely packed lamellar, nonliposomal structures. That the formation of such supramolecular assemblies supports the intermolecular interactions of ceramide is indicated by the SERS data. The unique spectral features that are assigned to the ceramide-containing lipid model systems here enable an identification of these molecules in biological systems and allow us to obtain information on their structure and interaction by SERS.
RESUMO
Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazolium-based PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C"). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g-1 at 0.5 C initially, and a remaining value of 930 mAh g-1 after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g-1 at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion.
RESUMO
Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.
RESUMO
Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.
RESUMO
Semiconducting carbon nitride polymers are used in metal-free photocatalysts and in opto-electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic protocols and properties are compared for two types of carbon nitride materials - 2D layered poly(triazine imide) (PTI) and hydrogen-bonded melem hydrate - obtained from three low-melting salt eutectics taken from the systematic series of the alkali metal halides: LiCl/KCl, LiBr/KBr, and LiI/KI. The size of the anion plays a significant role in the formation process of the condensed carbon nitride polymers, and it suggests a strong templating effect. The smaller anions (chloride and bromide) become incorporated into triazine (C3 N3 )-based PTI frameworks. The larger iodide does not stabilize the formation of a triazine-based polymer, but instead it leads to the formation of the heptazine (C6 N7 )-based hydrogen-bonded melem hydrate as the main crystalline phase. Melem hydrate, obtained as single-crystalline powders, was compared with PTI in photocatalytic hydrogen evolution from water and in an OLED device. Further, the emergence of each carbon nitride species from its corresponding salt eutectic was rationalized via density functional theory calculations. This study highlights the possibilities to further tailor the properties of eutectic salt melts for ionothermal synthesis of organic functional materials.
RESUMO
Poly(triazine imide) (PTI) is a highly crystalline semiconductor, and though no techniques exist that enable synthesis of macroscopic monolayers of PTI, it is possible to study it in thin layer device applications that are compatible with its polycrystalline, nanoscale morphology. We find that the by-product of conventional PTI synthesis is a C-C carbon-rich phase that is detrimental for charge transport and photoluminescence. An optimized synthetic protocol yields a PTI material with an increased quantum yield, enabled photocurrent and electroluminescence. We report that protonation of the PTI structure happens preferentially at the pyridinic Nâ atoms of the triazine rings, is accompanied by exfoliation of PTI layers, and contributes to increases in quantum yield and exciton lifetimes. This study describes structure-property relationships in PTI that link the nature of defects, their formation, and how to avoid them with the optical and electronic performance of PTI. On the basis of our findings, we create an OLED prototype with PTI as the active, metal-free material.
RESUMO
Herein, we report a waterproof anti-SARS-CoV-2 protective film prepared by spray-coating of an aqueous colloidal dispersion of poly(ionic liquid)/copper (PIL/Cu) composite nanoparticles onto a substrate. The PIL dispersion was prepared by suspension polymerization of 3-dodecyl-1-vinylimdiazolium bromide in water at 70°C. The copper acetate salt was added into the PIL nanoparticle dispersion and in situ reduced into copper nanoparticles anchoring onto the PIL nanoparticles. Despite being waterborne, the PIL in bulk is intrinsically insoluble in water and the formed coating is stable in water. The formed surface coating by PIL/copper composite nanoparticles was able to deactivate SARS-CoV-2 virions by 90.0% in 30 minutes and thus may effectively prevent the spread of SARS-CoV-2 through surface contact. This method may provide waterborne dispersions for a broad range of antivirus protective surface coatings for both outdoor and indoor applications.
RESUMO
Covalent organic frameworks (COFs) have emerged as an important class of organic semiconductors and photocatalysts for the hydrogen evolution reaction (HER)from water. To optimize their photocatalytic activity, typically the organic moieties constituting the frameworks are considered and the most suitable combinations of them are searched for. However, the effect of the covalent linkage between these moieties on the photocatalytic performance has rarely been studied. Herein, we demonstrate that donor-acceptor (D-A) type imine-linked COFs can produce hydrogen with a rate as high as 20.7â mmol g-1 h-1 under visible light irradiation, upon protonation of their imine linkages. A significant red-shift in light absorbance, largely improved charge separation efficiency, and an increase in hydrophilicity triggered by protonation of the Schiff-base moieties in the imine-linked COFs, are responsible for the improved photocatalytic performance.
RESUMO
Nature provides us a panorama of fibrils with tremendous structural polymorphism from molecular building blocks to hierarchical association behaviors. Despite recent achievements in creating artificial systems with individual building blocks through self-assembly, molecularly encoding the relationship from model building blocks to fibril association, resulting in controlled macroscopic properties, has remained an elusive goal. In this paper, by employing a designed set of glycopeptide building blocks and combining experimental and computational tools, we report a library of controlled fibril polymorphism with elucidation from molecular packing to fibril association and the related macroscopic properties. The growth of the fibril either axially or radially with right- or left-handed twisting is determined by the subtle trade-off of oligosaccharide and oligopeptide components. Meanwhile, visible evidence for the association process of double-strand fibrils has been experimentally and theoretically proposed. Finally the fibril polymorphs demonstrated significant different macroscopic properties on hydrogel formation and cellular migration control.
Assuntos
Oligopeptídeos/química , Oligossacarídeos/química , Glicoproteínas/química , Hidrogéis/química , Simulação de Dinâmica Molecular , Conformação ProteicaRESUMO
Synaptic transmission is characterized by fast, tightly coupled processes and complex signaling pathways that require a precise protein organization, such as the previously reported nanodomain colocalization of pre- and postsynaptic proteins. Here, we used cryo-electron tomography to visualize synaptic complexes together with their native environment comprising interacting proteins and lipids on a 2- to 4-nm scale. Using template-free detection and classification, we showed that tripartite trans-synaptic assemblies (subcolumns) link synaptic vesicles to postsynaptic receptors and established that a particular displacement between directly interacting complexes characterizes subcolumns. Furthermore, we obtained de novo average structures of ionotropic glutamate receptors in their physiological composition, embedded in plasma membrane. These data support the hypothesis that synaptic function is carried by precisely organized trans-synaptic units. It provides a framework for further exploration of synaptic and other large molecular assemblies that link different cells or cellular regions and may require weak or transient interactions to exert their function.