Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
iScience ; 26(3): 106175, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36788793

RESUMO

Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feedforward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.

2.
Sci Rep ; 12(1): 16218, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171423

RESUMO

Single-cell assays have enriched our understanding of hematopoiesis and, more generally, stem and progenitor cell biology. However, these single-end-point approaches provide only a static snapshot of the state of a cell. To observe and measure dynamic changes that may instruct cell fate, we developed an approach for examining hematopoietic progenitor fate specification using long-term (> 7-day) single-cell time-lapse imaging for up to 13 generations with in situ fluorescence staining of primary human hematopoietic progenitors followed by algorithm-assisted lineage tracing. We analyzed progenitor cell dynamics, including the division rate, velocity, viability, and probability of lineage commitment at the single-cell level over time. We applied a Markov probabilistic model to predict progenitor division outcome over each generation in culture. We demonstrated the utility of this methodological pipeline by evaluating the effects of the cytokines thrombopoietin and erythropoietin on the dynamics of self-renewal and lineage specification in primary human bipotent megakaryocytic-erythroid progenitors (MEPs). Our data support the hypothesis that thrombopoietin and erythropoietin support the viability and self-renewal of MEPs, but do not affect fate specification. Thus, single-cell tracking of time-lapse imaged colony-forming unit assays provides a robust method for assessing the dynamics of progenitor self-renewal and lineage commitment.


Assuntos
Eritropoetina , Trombopoetina , Diferenciação Celular , Linhagem da Célula , Eritropoetina/farmacologia , Humanos , Megacariócitos , Trombopoetina/farmacologia
3.
bioRxiv ; 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35132420

RESUMO

Despite much concerted effort to better understand SARS-CoV-2 viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feed-forward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections, and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.

4.
Sci Rep ; 9(1): 18940, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831779

RESUMO

Cancer is a genetic disease that results from accumulation of unfavorable mutations. As soon as genetic and epigenetic modifications associated with these mutations become strong enough, the uncontrolled tumor cell growth is initiated, eventually spreading through healthy tissues. Clarifying the dynamics of cancer initiation is thus critically important for understanding the molecular mechanisms of tumorigenesis. Here we present a new theoretical method to evaluate the dynamic processes associated with the cancer initiation. It is based on a discrete-state stochastic description of the formation of tumors as a fixation of cancerous mutations in tissues. Using a first-passage analysis the probabilities for the cancer to appear and the times before it happens, which are viewed as fixation probabilities and fixation times, respectively, are explicitly calculated. It is predicted that the slowest cancer initiation dynamics is observed for neutral mutations, while it is fast for both advantageous and, surprisingly, disadvantageous mutations. The method is applied for estimating the cancer initiation times from experimentally available lifetime cancer risks for different types of cancer. It is found that the higher probability of the cancer to occur does not necessary lead to the faster times of starting the cancer. Our theoretical analysis helps to clarify microscopic aspects of cancer initiation processes.


Assuntos
Transformação Celular Neoplásica , Modelos Biológicos , Mutação , Neoplasias , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Processos Estocásticos
5.
Molecules ; 23(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131459

RESUMO

Protein-DNA interactions are critical for the successful functioning of all natural systems. The key role in these interactions is played by processes of protein search for specific sites on DNA. Although it has been studied for many years, only recently microscopic aspects of these processes became more clear. In this work, we present a review on current theoretical understanding of the molecular mechanisms of the protein target search. A comprehensive discrete-state stochastic method to explain the dynamics of the protein search phenomena is introduced and explained. Our theoretical approach utilizes a first-passage analysis and it takes into account the most relevant physical-chemical processes. It is able to describe many fascinating features of the protein search, including unusually high effective association rates, high selectivity and specificity, and the robustness in the presence of crowders and sequence heterogeneity.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Modelos Teóricos , Algoritmos , Sequência de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Processos Estocásticos
6.
J Phys Chem Lett ; 8(17): 4049-4054, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28796515

RESUMO

The starting point of many fundamental biological processes is associated with protein molecules finding and recognizing specific sites on DNA. However, despite a large number of experimental and theoretical studies on protein search for targets on DNA, many molecular aspects of underlying mechanisms are still not well understood. Experiments show that proteins bound to DNA can switch between slow recognition and fast search conformations. However, from a theoretical point of view, such conformational transitions should slow down the protein search for specific sites on DNA, in contrast to available experimental observations. In addition, experiments indicate that the nucleotide composition near the target site is more symmetrically homogeneous, leading to stronger effective interactions between proteins and DNA at these locations. However, as has been shown theoretically, this should also make the search less efficient, which is not observed. We propose a possible resolution of these problems by suggesting that conformational transitions occur only within a segment around the target where stronger interactions between proteins and DNA are observed. Two theoretical methods, based on continuum and discrete-state stochastic calculations, are developed, allowing us to obtain a comprehensive dynamic description for the protein search process in this system. The existence of an optimal length of the conformational transition zone with the shortest mean search time is predicted.


Assuntos
DNA/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Modelos Moleculares , Proteínas/metabolismo
7.
Biophys J ; 112(5): 859-867, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297645

RESUMO

Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein filaments formed on single-stranded segments of DNA. A critical step in the homologous recombination is a search for a corresponding homologous region on DNA, which is called a homology search. Recent single-molecule experiments clarified some aspects of this process, but its molecular mechanisms remain not well understood. We developed a quantitative theoretical approach to analyze the homology search. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the homology search is presented. It is found that the search dynamics depends on the degree of extension of DNA molecules and on the size of RecA nucleoprotein filaments, in agreement with experimental single-molecule measurements of DNA pairing by RecA proteins. Our theoretical calculations, supported by extensive Monte Carlo computer simulations, provide a molecular description of the mechanisms of the homology search.


Assuntos
DNA/genética , DNA/metabolismo , Modelos Biológicos , Recombinases Rec A/metabolismo , Homologia de Sequência do Ácido Nucleico , DNA/química , Método de Monte Carlo , Conformação de Ácido Nucleico
8.
J Phys Chem B ; 120(26): 5802-9, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-26618222

RESUMO

Protein search for specific sequences on DNA marks the beginning of major biological processes. Experiments indicate that proteins find and recognize their targets quickly and efficiently. Because of the large number of experimental and theoretical investigations, there is a reasonable understanding of the protein search processes in purified in vitro systems. However, the situation is much more complex in live cells where multiple biochemical and biophysical processes can interfere with the protein search dynamics. In this study, we develop a theoretical method that explores the effect of crowding on DNA chains during the protein search. More specifically, the role of static and dynamic obstacles is investigated. The method employs a discrete-state stochastic framework that accounts for most relevant physical and chemical processes in the system. Our approach also provides an analytical description for all dynamic properties. It is found that the presence of the obstacles can significantly modify the protein search dynamics. This effect depends on the size of the obstacles, on the spatial positions of the target and the obstacles, on the nature of the search regime, and on the dynamic nature of the obstacles. It is argued that the crowding on DNA can accelerate or slow down the protein search dynamics depending on these factors. A comparison with existing experimental and theoretical results is presented. Theoretical results are discussed using simple physical-chemical arguments, and they are also tested with extensive Monte Carlo computer simulations.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Sítios de Ligação , Simulação por Computador , Cinética , Método de Monte Carlo , Ligação Proteica , Processos Estocásticos , Termodinâmica
9.
Biomed Res Int ; 2015: 120802, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26484350

RESUMO

In consequence of the key role of factor Xa in the clotting cascade and absence of its activity in the processes that do not affect coagulation, this protein is an attractive target for development of new blood coagulation inhibitors. Factor Xa is more effective and convenient target for creation of anticoagulants than thrombin, inhibition of which may cause some side effects. This study is aimed at finding new inhibitors of factor Xa by molecular computer modeling including docking SOL and postdocking optimization DISCORE programs. After validation of molecular modeling methods on well-known factor Xa inhibitors the virtual screening of NCI Diversity and Voronezh State University databases of ready-made low molecular weight species has been carried out. Seventeen compounds selected on the basis of modeling results have been tested experimentally in vitro. It has been found that 12 of them showed activity against factor Xa (IC50 = 1.8-40 µM). Based on analysis of the results, the new original compound was synthesized and experimentally verified. It shows activity against factor Xa with IC50 value of 0.7 µM.


Assuntos
Descoberta de Drogas/métodos , Inibidores do Fator Xa , Modelos Moleculares
10.
J Phys Chem B ; 119(38): 12410-6, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26328804

RESUMO

Protein search for specific binding sites on DNA is a fundamental biological phenomenon associated with the beginning of most major biological processes. It is frequently found that proteins find and recognize their specific targets quickly and efficiently despite the complex nature of protein-DNA interactions in living cells. Although significant experimental and theoretical efforts were made in recent years, the mechanisms of these processes remain not well-clarified. We present a theoretical study of the protein target search dynamics in the presence of semispecific binding sites which are viewed as traps. Our theoretical approach employs a discrete-state stochastic method that accounts for the most important physical and chemical processes in the system. It also leads to a full analytical description for all dynamic properties of the protein search. It is found that the presence of traps can significantly modify the protein search dynamics. This effect depends on the spatial positions of the targets and traps, on distances between them, on the average sliding length of the protein along the DNA, and on the total length of DNA. Theoretical predictions are discussed using simple physical-chemical arguments, and they are also validated with extensive Monte Carlo computer simulations.


Assuntos
DNA/química , Proteínas/química , Sítios de Ligação , Simulação por Computador , Modelos Químicos , Modelos Genéticos , Método de Monte Carlo , Processos Estocásticos
11.
J Chem Phys ; 143(10): 105102, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374061

RESUMO

Protein-DNA interactions are crucial for all biological processes. One of the most important fundamental aspects of these interactions is the process of protein searching and recognizing specific binding sites on DNA. A large number of experimental and theoretical investigations have been devoted to uncovering the molecular description of these phenomena, but many aspects of the mechanisms of protein search for the targets on DNA remain not well understood. One of the most intriguing problems is the role of multiple targets in protein search dynamics. Using a recently developed theoretical framework we analyze this question in detail. Our method is based on a discrete-state stochastic approach that takes into account most relevant physical-chemical processes and leads to fully analytical description of all dynamic properties. Specifically, systems with two and three targets have been explicitly investigated. It is found that multiple targets in most cases accelerate the search in comparison with a single target situation. However, the acceleration is not always proportional to the number of targets. Surprisingly, there are even situations when it takes longer to find one of the multiple targets in comparison with the single target. It depends on the spatial position of the targets, distances between them, average scanning lengths of protein molecules on DNA, and the total DNA lengths. Physical-chemical explanations of observed results are presented. Our predictions are compared with experimental observations as well as with results from a continuum theory for the protein search. Extensive Monte Carlo computer simulations fully support our theoretical calculations.


Assuntos
DNA/metabolismo , Proteínas/metabolismo , Sítios de Ligação , Simulação por Computador , Modelos Genéticos , Modelos Moleculares , Método de Monte Carlo , Ligação Proteica , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA