Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(47): 17328-17336, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37956981

RESUMO

Cell surface glycans are essential for establishing cell communication, adhesion, and migration. However, it remains challenging to obtain cell surface-specific information about glycoconjugate structures. Acquiring this information is essential for unraveling the functional role of glycans and for exploiting them as clinical targets. To specifically analyze the N-glycoprotein forms expressed at the cell surface, we developed a C18 liquid chromatography (LC)-mass spectrometry (MS)-based glycoproteomics method in combination with highly specific cell surface protein labeling and enrichment using a biotin label. The surface-specificity of the method was validated by MS-based proteomics of subcellular component marker proteins. Using the human keratinocytes N/TERT-1 as a model system, we identified and quantified the glycosylation of hundreds of cell surface N-glycosylation sites. This approach allowed us to study the glycoforms present at the functional relevant cell surface, omitting immaturely glycosylated proteins present in the secretory pathway. Interestingly, the different stages of N-glycan processing at individual sites displayed at the cell surface were found to correlate with their accessibility for ER-residing processing enzymes, as investigated through molecular dynamics simulations. Using the new approach, we compared N-glycosylation sites of proteins expressed on the cell surface to their counterparts in a total cell lysate, showing profound differences in glycosylation between the subcellular components and indicating the relevance of the method for future studies in understanding contextual glycan functions.


Assuntos
Glicoproteínas , Polissacarídeos , Humanos , Glicosilação , Glicoproteínas/química , Espectrometria de Massas/métodos , Polissacarídeos/química
2.
Anal Chem ; 94(10): 4343-4351, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245040

RESUMO

O-Glycosylation is an omnipresent modification of the human proteome affecting many cellular functions, including protein cleavage, protein folding, and cellular signaling, interactions, and trafficking. The functions are governed by differentially regulated O-glycan types and terminal structures. It is therefore essential to develop analytical methods that facilitate the annotation of O-glycans in biological material. While various successful strategies for the in-depth profiling of released O-glycans have been reported, these methods are often limitedly accessible to the nonspecialist or challenged by the high abundance of O-glycan structural isomers. Here, we developed a high-throughput sample preparation approach for the nonreductive release and characterization of O-glycans from human cell material. Reducing-end labeling allowed efficient isomer separation and detection using C18 nanoliquid chromatography coupled to Orbitrap mass spectrometry. Using the method in combination with a library of genetically glycoengineered cells displaying defined O-glycan types and structures, we were able to annotate individual O-glycan structural isomers from a complex mixture. Applying the method in a model system of human keratinocytes, we found a wide variety of O-glycan structures, including O-fucose, O-glucose, O-GlcNAc, and O-GalNAc glycosylation, with the latter carrying both elongated core1 and core2 structures and varying numbers of fucoses and sialic acids. The method, including the now well-characterized standards, provides the opportunity to study glycomic changes in human tissue and disease models using rather mainstream analytical equipment.


Assuntos
Cromatografia , Polissacarídeos , Glicosilação , Humanos , Isomerismo , Espectrometria de Massas , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA